LEADER 02565nam 2200565 450 001 9910480725903321 005 20170821171807.0 010 $a1-4704-0492-3 035 $a(CKB)3360000000464400 035 $a(EBL)3113576 035 $a(SSID)ssj0000973402 035 $a(PQKBManifestationID)11529913 035 $a(PQKBTitleCode)TC0000973402 035 $a(PQKBWorkID)10960291 035 $a(PQKB)11115453 035 $a(MiAaPQ)EBC3113576 035 $a(PPN)195410998 035 $a(EXLCZ)993360000000464400 100 $a20790307h19791979 uy| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNon-spherical principal series representations of a semisimple Lie group /$fAlfred Magnus 210 1$aProvidence, Rhode Island :$cAmerican Mathematical Society,$d[1979] 210 4$dİ1979 215 $a1 online resource (61 p.) 225 1 $aMemoirs of the American Mathematical Society,$x0065-9290 ;$vnumber 216 300 $a"Volume 19 ... (first of 2 numbers)." 311 $a0-8218-2216-0 320 $aBibliography: pages 51-52. 327 $a""Table of Contents""; ""Introduction""; ""Chapter I""; ""Section 1. Definitions and Major Results""; ""Section 2. An Outline""; ""Chapter II""; ""Section 3. Preliminaries""; ""Section 4. The Irreducible Modules Z[sup(I?³)][sub(I??)]""; ""Section 5. Irreducibility and Cyclicity""; ""Section 6. Unitarity""; ""Section 7. An Expression for R[sup(I?³)][sub(I??)]""; ""Chapter III""; ""Section 8. Reduction to Rank One""; ""Section 9. The Rank One Case""; ""Section 10. The Diagonal Map""; ""Section 11. Finite Dimensional Representations""; ""Section 12. Calculating P[sup(I??)][sub(I?³)] for su( N,1)"" 327 $a""Chapter IV""""Section 13. The Zeros of R[sup(I?³)][sub(I??)] and P[sup(I?³)][sub(I??)]""; ""Section 14. Representations of the Group G[sub(0)]""; ""Section 15. An Application""; ""Bibliography"" 410 0$aMemoirs of the American Mathematical Society ;$vno. 216. 606 $aSemisimple Lie groups 606 $aRepresentations of groups 608 $aElectronic books. 615 0$aSemisimple Lie groups. 615 0$aRepresentations of groups. 676 $a510/.8 s 676 $a512/.55 700 $aMagnus$b Alfred$f1951-$0974547 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910480725903321 996 $aNon-spherical principal series representations of a semisimple Lie group$92218904 997 $aUNINA LEADER 01216nam0 22003253i 450 001 TO00113981 005 20231121125834.0 010 $a0471806358 100 $a20130725d1988 ||||0itac50 ba 101 | $aeng 102 $aus 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aNumerical modeling in science and engineering$fMyron B. Allen III, Ismael Herrera, George F. Pinder 210 $aNew York$cJohn Wiley & Sons$d1988 215 $aX, 418 p.$d24 cm 606 $aScienza$xModelli matematici$2FIR$3RMLC393259$9E 676 $a507.24$9$v21 700 1$aAllen$b, Myron B.$3TO0V057234$4070$054137 701 1$aHerrera$b, Ismael$3TO0V057235$4070$054138 701 1$aPinder$b, George Francis$3TO0V057236$4070$021006 790 1$aPinder$b, George F.$3SBNV105833$zPinder, George Francis 801 3$aIT$bIT-01$c20130725 850 $aIT-FR0099 899 $aBiblioteca Area Ingegneristica$bFR0099 912 $aTO00113981 950 0$aBiblioteca Area Ingegneristica$d 54S. L. 507.2 ALL$e 54VM 0000020085 VMB RS $fA $h20130725$i20130725 977 $a 54 996 $aNumerical modeling in science and engineering$93591836 997 $aUNICAS