LEADER 07512nam 2200385 450 001 9910688468303321 005 20230630210938.0 010 $a3-03842-636-9 035 $a(CKB)5400000000000547 035 $a(NjHacI)995400000000000547 035 $a(EXLCZ)995400000000000547 100 $a20230630d2017 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdvances in Polyhydroxyalkanoate (PHA) production /$fedited by Martin Koller 210 1$aBasel, Switzerland :$cMDPI,$d2017. 215 $a1 online resource (258 pages) 327 $aAbout the Special Issue Editor -- Preface to "Advances in Polyhydroxyalkanoate (PHA) Production" -- Martin Koller Advances in Polyhydroxyalkanoate (PHA) Production Reprinted from: Bioengineering 2017, 4(4), 88; doi: 10.3390/bioengineering4040088 -- Constantina Kourmentza, Jersson Placido, Nikolaos Venetsaneas, Anna Burniol-Figols, Cristiano Varrone, Hariklia N. Gavala and Maria A. M. Reis Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production -- Reprinted from: Bioengineering 2017, 4(2), 55; doi: 10.3390/bioengineering4020055 -- Rodrigo Yoji Uwamori Takahashi, Nathalia Aparecida Santos Castilho, Marcus Adonai Castro da Silva, Maria Cecilia Miotto and Andre Oliveira de Souza Lima Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates Reprinted from: Bioengineering 2017, 4(3), 60; doi: 10.3390/bioengineering4030060 -- Sourish Bhattacharya, Sonam Dubey, Priyanka Singh, Anupama Shrivastava and Sandhya Mishra Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry Reprinted from: Bioengineering 2016, 3(4), 34; doi: 10.3390/bioengineering3040034 -- Bhakti B. Salgaonkar and Judith M. Braganc¸a Utilization of Sugarcane Bagasse by Halogeometricum borinquense Strain E3 for Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Reprinted from: Bioengineering 2017, 4(2), 50; doi: 10.3390/bioengineering4020050 -- Dan Kucera, Pavla Benesova, Peter Ladicky, Miloslav Pekar, Petr Sedlacek and Stanislav Obruca Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite Reprinted from: Bioengineering 2017, 4(2), 53; doi: 10.3390/bioengineering4020053 -- Ayaka Hokamura, Yuko Yunoue, Saki Goto and Hiromi Matsusaki Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3 Reprinted from: Bioengineering 2017, 4(3), 68; doi: 10.3390/bioengineering4030068 -- Brian Johnston, Guozhan Jiang, David Hill, Grazyna Adamus, Iwona Kwiecien, Magdalena Zie?ba, Wanda Sikorska, Matthew Green, Marek Kowalczuk and Iza Radecka The Molecular Level Characterization of Biodegradable Polymers Originated from Polyethylene Using Non-Oxygenated Polyethylene Wax as a Carbon Source for Polyhydroxyalkanoate Production Reprinted from: Bioengineering 2017, 4(3), 73; doi: 10.3390/bioengineering4030073 -- Stephanie Karmann, Sven Panke and Manfred Zinn The Bistable Behaviour of Pseudomonas putida KT2440 during PHA Depolymerization under Carbon Limitation Reprinted from: Bioengineering 2017, 4(2), 58; doi: 10.3390/bioengineering4020058 -- Liliana Montano-Herrera, Bronwyn Laycock, Alan Werker and Steven Pratt The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents Reprinted from: Bioengineering 2017, 4(1), 20; doi: 10.3390/bioengineering4010020 -- Eduarda Morgana da Silva Montenegro, Gabriela Scholante Delabary, Marcus Adonai Castro da Silva, Fernando Dini Andreote and Andre Oliveira de Souza Lima Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria Reprinted from: Bioengineering 2017, 4(2), 52; doi: 10.3390/bioengineering4020052 -- Clemens Troschl, Katharina Meixner and Bernhard Drosg Cyanobacterial PHA Production-Review of Recent Advances and a Summary of Three Years' Working Experience Running a Pilot Plant Reprinted from: Bioengineering 2017, 4(2), 26; doi: 10.3390/bioengineering4020026 -- Timo Pittmann and Heidrun Steinmetz Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants Reprinted from: Bioengineering 2017, 4(2), 54; doi: 10.3390/bioengineering4020054 -- Miguel Miranda De Sousa Dias, Martin Koller, Dario Puppi, Andrea Morelli, Federica Chiellini and Gerhart Braunegg Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165 Reprinted from: Bioengineering 2017, 4(2), 36; doi: 10.3390/bioengineering4020036 -- Dario Puppi, Andrea Morelli and Federica Chiellini Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(e-caprolactone) Blend Scaffolds for Tissue Engineering Reprinted from: Bioengineering 2017, 4(2), 49; doi: 10.3390/bioengineering4020049. 330 $aCurrently, we are witnessing highly dynamic research efforts related to the exciting field of novel biodegradable plastic-like materials. These activities originate from a growing public awareness of prevailing ecological problems associated to, e.g., rising piles of plastic waste, increasing greenhouse gas emissions, and ongoing depletion of such fossil resources usually used for the synthesis of "full carbon backbone" plastics. Polyhydroxyalkanoate (PHA) biopolyesters, a family of versatile plastic-like materials produced by living microbes, are a future-oriented alternative to traditional plastics. If accomplished in an optimized way, production and the entire lifecycle of PHA are embedded into nature´s closed carbon cycle, which is underlined by PHA´s main benefits of being "biobased", "biosynthesized", "biocompatible", and "biodegradable". Sustainable and economically feasible PHA synthesis, especially on an industrially relevant scale, requires all production steps to be understood and improved. Among other aspects, this calls for new powerful production strains to be screened; knowledge about the proteome and genome of PHA accumulating organisms to be consolidated; the kinetics of the bioprocesses to be thoroughly understood; abundantly available inexpensive raw materials to be tested; the monomer composition of PHA to be adapted; (bio)chemical engineering to be optimized; and novel PHA recovery strategies to be developed in order to reduce energy and chemical inventory. The present book provides a comprehensive compilation of articles addressing all these different aspects; the individual chapters were composed by globally recognized front running experts from special niches of PHA research. We are convinced that this book will be of major benefit to the growing scientific community active in biopolymer research. 517 $aAdvances in Polyhydroxyalkanoate 606 $aBiodegradable plastics 606 $aPoly-beta-hydroxyalkanoates 615 0$aBiodegradable plastics. 615 0$aPoly-beta-hydroxyalkanoates. 676 $a620.192323 702 $aKoller$b Martin 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910688468303321 996 $aAdvances in Polyhydroxyalkanoate (PHA) Production$92943916 997 $aUNINA LEADER 01707nam0 22003733i 450 001 MIL0096270 005 20231121125533.0 020 $aIT$b8310663 100 $a20180220d1983 ||||0itac50 ba 101 | $aita 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aEresie medioevali$escritti minori$fIlarino da Milano$gintroduzione di Stanislao da Campagnola 210 $aRimini$cMaggioli$d[1983] 215 $a559 p.$d24 cm. 225 | $aStudi e ricerche dell'Istituto di storia della Facoltà di magistero dell'Università di Perugia$v1 410 0$1001CFI0025171$12001 $aStudi e ricerche dell'Istituto di storia della Facoltà di magistero dell'Università di Perugia$v1$171201$aUniversità degli studi$c $b : Istituto di storia$3CFIV014270 606 $aEresie$xSec. 11.-15.$2FIR$3RMLC018109$9I 676 $a273$9$v20 700 0$aIlarino : da Milano$3SBLV153551$4070$0213207 702 0$aStanislao : da Campagnola$3CFIV043809 790 1$aCampagnola$b, Stanislao : da$3SBNV088609$zStanislao : da Campagnola 790 1$aDa Campagnola$b, Stanislao$3SBNV088610$zStanislao : da Campagnola 790 1$aSantachiara$b, Umberto$3UM1V021890$zStanislao : da Campagnola 790 1$aSantachiara$b, Stanislao$3UM1V031071$zStanislao : da Campagnola 801 3$aIT$bIT-01$c20180220 850 $aIT-FR0017 899 $aBiblioteca umanistica Giorgio Aprea$bFR0017 $eN 912 $aMIL0096270 950 0$aBiblioteca umanistica Giorgio Aprea$d 52MAG 14/21$e 52FSS0000003835 VMN RS $fA $h20180220$i20180220 977 $a 52 996 $aEresie medioevali$9220345 997 $aUNICAS LEADER 00984cam0 22002773 450 001 SOB020282 005 20251202131014.0 010 $a8887115206 100 $a20040211d2000 |||||ita|0103 ba 101 $aita 102 $aIT 200 1 $aArcheologia dei materiali da costruzione$fAurora Cagnana$gpremessa Tiziano Mannoni 210 $aMantova$cS.A.P. - Soc. Archeologica Padana$d2000 215 $a246 p.$cill.$d20 cm 225 2 $aManuali per l'Archeologia$v1 410 1$1001LAEC00018705$12001 $a*Manuali per l'Archeologia$v1 700 1$aCagnana$b, Aurora$3AF00012799$4070$0281854 801 0$aIT$bUNISOB$c20251202$gRICA 850 $aUNISOB 852 $aUNISOB$j930$m114492 912 $aSOB020282 940 $aM 102 Monografia moderna SBN 941 $aM 957 $a930$b000047$gBRE$d114492$rACQUISTO$1Alfano$2UNISOB$3UNISOB$420210524085421.0$520251202131014.0$6bethb$fTesto 2023/2024 996 $aArcheologia dei materiali da costruzione$9175793 997 $aUNISOB