LEADER 01314nam0 22003373i 450 001 LO10387134 005 20231121125519.0 010 $a8820493357 100 $a20161114d1994 ||||0itac50 ba 101 | $aita 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 1 $aGestire progetti con successo$ele 10 regole per dirigere team di progetto e task forces$fW. Alan Randolph, Barry Z. Posner 210 $aMilano$cF. Angeli$dİ1994 215 $a157 p.$d22 cm. 225 | $aFormazione permanente$i. Sezione 1, Problemi d'oggi$v153 410 0$1001CFI0018478$12001 $aFormazione permanente$i. Sezione 1, Problemi d'oggi$v153 500 10$aGetting the job done.$3LO10388588$9CFIV132658$93608236 606 $aAzienda$xGestione$2FIR$3RMLC377563$9I 676 $a658.404$9$v20 700 1$aRandolph$b, W. Alan$3CFIV132658$4070$01157206 701 1$aPosner$b, Barry Z.$3CFIV132659$4070$0857988 801 3$aIT$bIT-01$c20161114 850 $aIT-FR0017 899 $aBiblioteca umanistica Giorgio Aprea$bFR0017 $eN 912 $aLO10387134 950 0$aBiblioteca umanistica Giorgio Aprea$d 52MAG 13/2570$e 52FSS0000052445 VMN RS $fA $h20180213$i20180213 977 $a 52 996 $aGetting the job done$93608236 997 $aUNICAS LEADER 12043nam 22005893 450 001 9911019733103321 005 20231111060230.0 010 $a9781394194384 010 $a1394194382 010 $a9781394194377 010 $a1394194374 035 $a(MiAaPQ)EBC30876447 035 $a(Au-PeEL)EBL30876447 035 $a(CKB)28805083000041 035 $a(Exl-AI)30876447 035 $a(OCoLC)1409030836 035 $a(EXLCZ)9928805083000041 100 $a20231111d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSensorless Control of Permanent Magnet Synchronous Machine Drives 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2023. 210 4$dİ2024. 215 $a1 online resource (498 pages) 225 1 $aIEEE Press Series on Control Systems Theory and Applications Series 311 08$aPrint version: Zhu, Zi Qiang Sensorless Control of Permanent Magnet Synchronous Machine Drives Newark : John Wiley & Sons, Incorporated,c2023 9781394194353 327 $aCover -- Title Page -- Copyright Page -- Contents -- About the Authors -- Preface -- List of Abbreviations -- List of Symbols -- Chapter 1 General Introduction -- 1.1 Introduction -- 1.2 Permanent Magnet Machines -- 1.2.1 Topologies -- 1.2.2 Drives -- 1.3 Basic Principle of PM BLAC (PMSM) Drives -- 1.3.1 Modeling -- 1.3.1.1 ABC Reference Frame -- 1.3.1.2 Stationary Reference Frame -- 1.3.1.3 Synchronous Reference Frame -- 1.3.2 Control Strategies -- 1.3.2.1 Space Vector PWM -- 1.3.2.2 Field-Oriented Control -- 1.3.2.3 Direct Torque Control -- 1.3.2.4 Model Predictive Control -- 1.4 Basic Principle of PM BLDC Drives -- 1.4.1 Modeling -- 1.4.2 Control Strategies -- 1.5 Comparison Between PM BLDC (PMSM) and BLAC Drives -- 1.5.1 Square-Wave Back-EMF Machine -- 1.5.2 Sine-Wave Back-EMF Machine -- 1.6 Sensorless Control Techniques and Applications -- 1.6.1 Classification -- 1.6.2 Applications -- 1.7 Scope of This Book -- References -- Chapter 2 Fundamental Model-Based Sensorless Control -- 2.1 Introduction -- 2.2 Flux-Linkage-Based Method -- 2.2.1 Flux-Linkage Method for Non-salient PMSMs -- 2.2.2 Active Flux-Linkage Method for Salient PMSMs -- 2.3 Back-EMF-Based Method -- 2.3.1 Back-EMF Method for Non-salient PMSMs -- 2.3.2 Extended Back-EMF Method for Salient PMSMs -- 2.3.2.1 In Synchronous Reference Frame -- 2.3.2.2 In Stationary Reference Frame -- 2.3.3 Comparison -- 2.3.3.1 Comparison Between Back-EMF and Flux-Linkage Methods -- 2.3.3.2 Comparison of Active Flux and Extended Back-EMF -- 2.4 Position Observer -- 2.4.1 Arctangent Method -- 2.4.2 Phase-Locked Loop -- 2.4.3 Simplified Extended Kalman Filter -- 2.4.4 Simulation Results -- 2.5 Summary -- References -- Chapter 3 Fundamental Model-Based Sensorless Control-Issues and Solutions -- 3.1 Introduction -- 3.2 Integration and Filter. 327 $a3.2.1 Initial Value -- 3.2.2 Drift -- 3.2.3 Delay -- 3.3 Back-EMF and Current Harmonics -- 3.3.1 Influence of Back-EMF Harmonics -- 3.3.2 Influence of Current Harmonics -- 3.4 Cross-Coupling Magnetic Saturation -- 3.4.1 Impact on Position Estimation -- 3.4.2 Sensorless Control Accounting for Cross-Coupling Inductance -- 3.5 Parameter Mismatch -- 3.5.1 Impact on Position Estimation -- 3.5.2 Position Correction Method Under Parameter Mismatches -- 3.5.2.1 q-Axis Injection for q-Axis Inductance Mismatch -- 3.5.2.2 d-Axis Injection for Resistance Mismatch -- 3.5.2.3 Amplitude Calculation Technique -- 3.5.2.4 Position Error Correction with LMS Algorithm -- 3.5.2.5 Experimental Results -- 3.6 Parameter Asymmetry -- 3.6.1 Asymmetric Modeling -- 3.6.1.1 Resistance Asymmetry -- 3.6.1.2 Inductance Asymmetry -- 3.6.1.3 Back-EMF Asymmetry -- 3.6.2 Impacts on Position Estimation -- 3.6.3 Harmonic Suppression -- 3.7 Summary -- References -- Chapter 4 Saliency Tracking-Based Sensorless Control Methods -- 4.1 Introduction -- 4.2 High-Frequency Model of PM Machines -- 4.2.1 Model in Synchronous Reference Frame -- 4.2.2 Model in Estimated Synchronous Reference Frame -- 4.2.3 Model in Stationary Reference Frame -- 4.3 High-Frequency Signal Injection in Estimated Synchronous Reference Frame -- 4.3.1 Pulsating Sinusoidal Signal -- 4.3.2 Pulsating Square-Wave Signal -- 4.4 High-Frequency Signal Injection in Stationary Reference Frame -- 4.4.1 Rotating Sinusoidal Signal -- 4.4.2 Pulsating Sinusoidal Signal -- 4.4.2.1 Mathematical Model -- 4.4.2.2 Ip Pre-detection and Compensation -- 4.4.2.3 Experiment Results -- 4.4.3 Pulsating Square-Wave Signal -- 4.4.3.1 Mathematical Model -- 4.4.3.2 IpSQ Pre-detection and Compensation -- 4.4.3.3 Experiment Results -- 4.5 Position Observer -- 4.5.1 Basic Structure -- 4.5.2 Influence of LPF. 327 $a4.5.3 Convergence Analysis -- 4.6 Other Saliency Tracking-Based Methods -- 4.6.1 Transient Voltage Vector-Based Method -- 4.6.2 PWM Excitation-Based Method -- 4.7 Summary -- References -- Chapter 5 Saliency Tracking-Based Sensorless Control Methods-Issues and Solutions -- 5.1 Introduction -- 5.2 Cross-Coupling Magnetic Saturation -- 5.2.1 Impact on Position Estimation -- 5.2.2 Compensation Scheme -- 5.2.2.1 Direct Compensation -- 5.2.2.2 Indirect Compensation -- 5.3 Machine Saliency and Load Effect -- 5.3.1 Machine Saliency Investigation -- 5.3.2 Machine Saliency Circle -- 5.4 Multiple Saliency Effect -- 5.5 Asymmetric Parameters -- 5.5.1 High-Frequency Models with Machine Inductance Asymmetry -- 5.5.2 Suppression of Position Errors Due to Inductance Asymmetry -- 5.5.3 Experimental Results -- 5.5.3.1 Position Estimation Under Inductance Asymmetry -- 5.5.3.2 The Second Harmonic Oscillating Error Suppression -- 5.6 Inverter Nonlinearity Effects -- 5.6.1 Mechanism -- 5.6.1.1 Deadtime -- 5.6.1.2 Parasitic Capacitance Effects -- 5.6.2 HF Voltage Distortion -- 5.6.3 HF Current Distortion -- 5.6.3.1 Rotating Signal Injection-Based Method -- 5.6.3.2 Pulsating Signal Injection-Based Method -- 5.6.3.3 Experiment Results -- 5.6.4 Compensation Scheme -- 5.6.4.1 Pre-compensation -- 5.6.4.2 Post-compensation -- 5.6.4.3 Comparison -- 5.7 Signal Processing Delay -- 5.8 Selection of Amplitude and Frequency for Injection Voltage Signal -- 5.8.1 Quantization Error in AD Conversion -- 5.8.2 Sensorless Safe Operation Area -- 5.8.3 Experimental Results of Determining Amplitude and Frequency -- 5.8.4 Sensorless Operation Performance -- 5.8.5 Pseudo-random Selection of Injection Signal -- 5.9 Transition Between Low Speed and High Speed -- 5.10 Summary -- References. 327 $aChapter 6 Saliency Tracking-Based Sensorless Control Method Using Zero Sequence Voltage -- 6.1 Introduction -- 6.2 Rotating Sinusoidal Signal Injection -- 6.2.1 Zero Sequence Voltage Model -- 6.2.2 Signal Demodulation -- 6.3 Conventional Pulsating Sinusoidal Signal Injection -- 6.4 Anti-rotating Pulsating Sinusoidal Signal Injection -- 6.4.1 Anti-rotating Signal Injection -- 6.4.2 Signal Demodulation -- 6.4.3 Cross-Saturation Effect -- 6.4.4 Experimental Results -- 6.4.4.1 Zero Sequence Voltage Model Verification -- 6.4.4.2 Steady- and Dynamic-State Position Estimation Performances -- 6.4.4.3 Robustness and Accuracy Comparison -- 6.5 Conventional Pulsating Square-Wave Signal Injection -- 6.6 Anti-rotating Pulsating Square-Wave Signal Injection -- 6.6.1 Anti-rotating Signal Injection -- 6.6.2 Signal Demodulation -- 6.6.3 Cross-Saturation Effect -- 6.6.4 Experimental Results -- 6.6.4.1 Zero Sequence Voltage Model Verification -- 6.6.4.2 Steady- and Dynamic-State Position Estimation Performance -- 6.6.4.3 Comparison to Square-Wave Injection Method with HF Current Sensing -- 6.7 Summary -- References -- Chapter 7 Sensorless Control of Dual Three-Phase PMSMs and Open-.Winding PMSMs -- 7.1 Introduction -- 7.2 Dual Three-Phase PMSMs -- 7.2.1 Modeling of DTP-PMSM Drive -- 7.2.1.1 Double dq Model -- 7.2.1.2 Vector Space Decomposition -- 7.2.2 HFSI Sensorless Control with Current Response -- 7.2.3 HFSI Sensorless Control with Voltage Response -- 7.2.3.1 Zero Sequence Voltage Measurement -- 7.2.3.2 Modeling of Dual Three-Phase PMSM -- 7.2.3.3 Pulsating Sinusoidal Signal Injection -- 7.2.3.4 Rotating Signal Injection Method -- 7.2.3.5 Experimental Results and Analysis for DTP-PMSM -- 7.2.4 Fundamental Model-Based Sensorless Control -- 7.2.4.1 Extended Back-EMF Model on DTP-PMSM -- 7.2.4.2 Parameter Mismatch Effect. 327 $a7.2.4.3 Parameter Mismatch Correction -- 7.2.4.4 Experimental Results -- 7.2.5 Third Harmonic Back-EMF-Based Sensorless Control -- 7.3 Open Winding PMSMs -- 7.3.1 Modeling of OW-PMSM Drive -- 7.3.2 Phase Shift-Based SVPWM for OW-PMSM -- 7.3.3 Zero Sequence Current-Based Sensorless Control -- 7.3.4 Nonparametric Zero Sequence Voltage-Based Sensorless Control -- 7.4 Summary -- References -- Chapter 8 Magnetic Polarity Identification -- 8.1 Introduction -- 8.2 Dual Voltage Pulses Injection-Based Method -- 8.3 d-Axis Current Injection-Based Method -- 8.3.1 HF Current Response -- 8.3.2 HF Zero Sequence Voltage Response -- 8.4 Secondary Harmonic-Based Method -- 8.4.1 Modeling of Secondary Harmonics -- 8.4.2 HF Current Response -- 8.4.3 HF Zero Sequence Voltage Response -- 8.4.4 Experiment Results -- 8.5 Summary -- References -- Chapter 9 Rotor Initial Position Estimation -- 9.1 Introduction -- 9.2 Magnetic Saturation Effect -- 9.3 Basic Pulse Injection Method Using Three Phase Currents -- 9.3.1 Pulse Excitation Configuration -- 9.3.2 Current Response Model -- 9.3.3 Initial Position Estimation -- 9.4 Improved Pulse Injection Method Using Three Phase Currents -- 9.4.1 Utilization of Three Phase Current Responses -- 9.4.2 Pulse Injection Sequence -- 9.4.3 Boundary Detection Strategy -- 9.4.4 Experiment Results -- 9.4.4.1 Estimation Example -- 9.4.4.2 Overall Rotor Initial Position Estimation Performance -- 9.4.4.3 Boundary Detection Performance -- 9.5 Pulse Injection Method Using DC-Link Voltage -- 9.5.1 Utilization of DC-Link Voltage Variation -- 9.5.2 Pulse Injection Process -- 9.5.3 Experiment Results -- 9.5.3.1 Estimation Example -- 9.5.3.2 Overall Estimation Performance -- 9.5.3.3 Comparison with Estimation Using Current Responses -- 9.6 Voltage Pulse Selection -- 9.6.1 Selection of Duration. 327 $a9.6.2 Selection of Magnitude. 330 $aThis book provides a comprehensive exploration of sensorless control techniques for Permanent Magnet Synchronous Machine (PMSM) drives, a critical aspect of modern electrical engineering for improving efficiency and performance in motor control systems. Authored by experts Zi Qiang Zhu and Xi Meng Wu from the University of Sheffield, the text delves into both fundamental and advanced methods for sensorless control, including model-based and saliency-based approaches. It covers key topics such as flux-linkage methods, back-EMF models, and various signal injection techniques, addressing issues like magnetic saturation and parameter mismatches. The book targets professionals and researchers in electrical and control engineering, offering detailed methodologies, experimental results, and practical solutions for enhancing PMSM drive systems.$7Generated by AI. 410 0$aIEEE Press Series on Control Systems Theory and Applications Series 606 $aPermanent magnet motors$7Generated by AI 606 $aElectric machinery, Synchronous$7Generated by AI 615 0$aPermanent magnet motors 615 0$aElectric machinery, Synchronous 676 $a621.46 700 $aZhu$b Ziqiang$cPh. D.$01642369 701 $aWu$b Xi Meng$01838334 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911019733103321 996 $aSensorless Control of Permanent Magnet Synchronous Machine Drives$94465305 997 $aUNINA