LEADER 00806nam2 2200265 i 450 001 IEI0645596 005 20231121125510.0 010 $a9788821170034 100 $a20191219d2019 ||||0itac50 ba 101 | $aita 102 $ait 181 1$6z01$ai $bxxxe 182 1$6z01$an 200 0 $a2$fFranco Ferrarotti 210 $aBologna$cMarietti 1820$d2019 215 $a838 p.$d25 cm 462 1$1001IEI0645593$12001 $aScritti teorici$v2 801 3$aIT$bIT-01$c20191219 850 $aIT-FR0017 899 $aBiblioteca umanistica Giorgio Aprea$bFR0017 $eN 912 $aIEI0645596 950 2$aBiblioteca umanistica Giorgio Aprea$d 52MAG 16/93$e 52DUP0009035705 VMN RS $fA $h20191219$i20191219 977 $a 52 996 $a2$961340 997 $aUNICAS LEADER 01873oam 2200517zu 450 001 9910872952103321 005 20241212215216.0 035 $a(CKB)111055184273326 035 $a(SSID)ssj0000397107 035 $a(PQKBManifestationID)12102890 035 $a(PQKBTitleCode)TC0000397107 035 $a(PQKBWorkID)10342741 035 $a(PQKB)11677544 035 $a(EXLCZ)99111055184273326 100 $a20160829d2002 uy 101 0 $aeng 181 $ctxt 182 $cc 183 $acr 200 10$aProceedings VIPromCom-2002 : 4th EURASIP--IEEE Region 8 International Symposium on Video/Image Processing and Multimedia Communications, 16-19 June 2002, Zadar, Croatia 210 31$a[Place of publication not identified]$cCroatian Society Electronics in Marine ELMAR$d2002 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a9789537044015 311 08$a9537044017 606 $aMultimedia systems$vCongresses 606 $aVideo compression$vCongresses 606 $aImage transmission$vCongresses 606 $aComputer Science$2HILCC 606 $aEngineering & Applied Sciences$2HILCC 615 0$aMultimedia systems 615 0$aVideo compression 615 0$aImage transmission 615 7$aComputer Science 615 7$aEngineering & Applied Sciences 676 $a006.7 702 $aGrgiāc$b Mislav 702 $aGrgic$b Mislav 712 02$aEuropean Association for Signal Processing 712 02$aInstitute of Electrical and Electronics Engineers 712 02$aIEEE Xplore (Online service) 712 12$aInternational Symposium on Video/Image Processing and Multimedia Communications 801 0$bPQKB 906 $aPROCEEDING 912 $a9910872952103321 996 $aProceedings VIPromCom-2002 : 4th EURASIP--IEEE Region 8 International Symposium on Video$92547023 997 $aUNINA LEADER 05918nam 22005773 450 001 9911006786203321 005 20231110231734.0 010 $a1-83724-467-7 010 $a1-5231-4668-0 010 $a1-83953-427-3 035 $a(MiAaPQ)EBC7041445 035 $a(Au-PeEL)EBL7041445 035 $a(CKB)24234448600041 035 $a(MiAaPQ)EBC29377722 035 $a(NjHacI)9924234448600041 035 $a(Au-PeEL)EBL29377722 035 $a(OCoLC)1336989950 035 $a(EXLCZ)9924234448600041 100 $a20220713d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aControl and estimation of dynamical nonlinear and partial differential equation systems $etheory and applications 205 $a1st ed. 210 1$aStevenage :$cInstitution of Engineering & Technology,$d2022. 210 4$d©2022. 215 $a1 online resource (992 pages) 225 1 $aControl, Robotics and Sensors 311 08$a1-83953-426-5 327 $aIntro -- Contents -- About the authors -- Preface -- Acknowledgement -- 1. Principles of non-linear control -- 1.1 Control based on approximate linearization -- 1.2 Global linearization-based control concepts -- 1.3 Global linearization-based control using differential flatness theory -- 1.4 Control of PDE dynamical systems -- 2. Control based on approximate linearization for robotic systems -- 2.1 Nonlinear control of the cart and double-pendulum overhead crane -- 2.2 Nonlinear control of the underactuated offshore crane -- 2.3 Nonlinear control of the inertia wheel and pendulum system -- 2.4 Nonlinear control of the torsional oscillator with rotational actuator -- 2.5 Nonlinear control of robotic exoskeletons -- 2.6 Nonlinear control of brachiation robots -- 2.7 Nonlinear control of power line inspection robots -- 2.8 Nonlinear control of robots with electrohydraulic actuators -- 2.9 Nonlinear control of robots with electropneumatic actuators -- 2.10 Nonlinear control of flexible joint robots -- 2.11 Nonlinear control of redundant robotic manipulators -- 2.12 Nonlinear control of parallel closed-chain robotic manipulators -- 3. Control based on approximate linearization for autonomous vehicles -- 3.1 Nonlinear control of tracked autonomous vehicles -- 3.2 Nonlinear control of the autonomous articulated fire-truck -- 3.3 Nonlinear control of the truck and N-trailer system -- 3.4 Nonlinear control of the ball-bot autonomous robot -- 3.5 Nonlinear control of the ball-and-plate dynamical system -- 3.6 Nonlinear control of 3-DOF unmanned surface vessels -- 3.7 Nonlinear control of the 3-DOF autonomous underwater vessel -- 3.8 Nonlinear control of the vertical take-off and landing aircraft -- 3.9 Nonlinear control of aerial manipulators -- 3.10 Nonlinear control of the 6-DOF autonomous octocopter. 327 $a3.11 Nonlinear control of hypersonic aerial vehicles -- 4. Control based on approximate linearization in energy conversion -- 4.1 Nonlinear control of the VSI-fed three-phase PMSM -- 4.2 Nonlinear control of VSI fed six-phase PMSMs -- 4.3 Nonlinear control of DC electric microgrids -- 4.4 Nonlinear control of distributed marine-turbine power generation units -- 4.5 Nonlinear control of PMLSGs in wave energy conversion systems -- 4.6 Nonlinear control of Permanent Magnet Brushless DC motors -- 4.7 Nonlinear optimal control of Hybrid ElectricVehicles powertrains -- 4.8 Nonlinear control of shipboard AC/DC microgrids -- 4.9 Nonlinear control of power generation in hybrid AC/DC microgrids -- 5. Control based on approximate linearization for mechatronic systems -- 5.1 Nonlinear control of electrohydraulic actuators -- 5.2 Nonlinear control of electropneumatic actuators -- 5.3 Nonlinear control of hot-steel rolling mills -- 5.4 Nonlinear control of paper mills -- 5.5 Nonlinear control of the injection moulding machine -- 5.6 Nonlinear control of the slosh-container system dynamics -- 5.7 Nonlinear control of micro-satellites' attitude dynamics -- 5.8 Nonlinear control of the industrial crystallization process -- 6. Control based on global linearisation for industrial and PDE systems -- 6.1 Control of a robotic exoskeleton subject to time-delays -- 6.2 Adaptive control of synchronous reluctance machines -- 6.3 Control of a mobile robotic manipulator -- 6.4 State of charge estimation in EVs with a KF-based disturbance observer -- 6.5 Control of nonlinear wave PDE dynamics -- 6.6 Control of data-flow PDE for bandwidth allocation in internet routes -- 6.7 Diffusion PDE control of data flow in communication networks -- 6.8 Control of the diffusion PDE in Li-ion batteries -- 6.9 Control of the diffusion PDE in financial assets' management. 327 $a6.10 Estimation of PDE dynamics of the highway traffic -- 6.11 Estimation of the PDE dynamics of a cable-suspended bridge -- Epilogue -- Glossary -- References -- Index. 330 $aIn this comprehensive reference, the authors present new and innovative control and estimation methods based on dynamical nonlinear and partial differential equation systems, which are used in solving control problems such as stability and robustness issues in robotics, mechatronics, and other engineering applications. 410 0$aControl, Robotics and Sensors 606 $aControl theory$xMathematical models 606 $aControl theory$vCongresses 615 0$aControl theory$xMathematical models. 615 0$aControl theory 676 $a629.8312 700 $aRigatos$b Gerasimos$0995635 701 $aAbbaszadeh$b Masoud$01825466 701 $aSiano$b Pierluigi$01289215 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006786203321 996 $aControl and estimation of dynamical nonlinear and partial differential equation systems$94393153 997 $aUNINA