LEADER 01627nam0 22004333i 450 001 VAN0278604 005 20240626084258.90 017 70$2N$a9783031264559 100 $a20240626d2023 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aGeometry of Linear Matrix Inequalities$eA Course in Convexity and Real Algebraic Geometry with a View Towards Optimization$fTim Netzer, Daniel Plaumann 210 $aCham$cBirkhäuser$cSpringer$d2023 215 $aviii, 161 p.$cill.$d24 cm 410 1$1001VAN0103268$12001 $aCompact textbooks in mathematics$1210 $aBasel [etc.]$cBirkhäuser 610 $aConvex Geometry$9KW:K 610 $aConvex Optimization$9KW:K 610 $aEigenvalues$9KW:K 610 $aHyperbolic Polynomials$9KW:K 610 $aMatrices$9KW:K 610 $aNon-commutative Geometry$9KW:K 610 $aPolynomial optimization$9KW:K 610 $aReal Algebraic Curves$9KW:K 610 $aReal Algebraic Geometry$9KW:K 610 $aSemidefinitie Programming$9KW:K 610 $aSums of squares$9KW:K 610 $aextended formulations$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aNetzer$bTim$3VANV231174$01368018 701 1$aPlaumann$bDaniel$3VANV231175$01741887 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240628$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-26455-9$zhttps://doi.org/10.1007/978-3-031-26455-9 912 $fN 912 $aVAN0278604 996 $aGeometry of Linear Matrix Inequalities$94168246 997 $aUNICAMPANIA