LEADER 01585nam0 22004333i 450 001 VAN0278575 005 20240625104731.343 017 70$2N$a9783031222924 100 $a20240625d2023 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aClasses of Good Noetherian Rings$fCristodor Ionescu 210 $aCham$cBirkhäuser$cSpringer$d2023 215 $axiv, 480 p.$cill.$d24 cm 410 1$1001VAN0051364$12001 $aFrontiers in mathematics$1210 $aBasel [etc.]$cBirkhäuser$d2004- 610 $aAlgebraic Geometry$9KW:K 610 $aAlgebraic structures$9KW:K 610 $aBertini's Theorem$9KW:K 610 $aCohen Factorizations$9KW:K 610 $aCommutative algebra$9KW:K 610 $aNagata Rings$9KW:K 610 $aNeron Desingularization$9KW:K 610 $aNoetherian Local Rings$9KW:K 610 $aNoetherian rings$9KW:K 610 $aPopescu's Theorem$9KW:K 610 $aRegular Morphism Algebraic Geometry$9KW:K 610 $aResolution of Singularities$9KW:K 610 $aRings Formal Fibres$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aIonescu$bCristodor$3VANV231133$01348041 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240628$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-22292-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 912 $fN 912 $aVAN0278575 996 $aClasses of Good Noetherian Rings$93085123 997 $aUNICAMPANIA