LEADER 02553nam0 22005893i 450 001 VAN0278103 005 20240725040101.137 017 70$2N$a9783031138737 100 $a20240617d2022 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aRepresentation Theory of Finite Group Extensions$eClifford Theory, Mackey Obstruction, and the Orbit Method$fTullio Ceccherini-Silberstein, Fabio Scarabotti, Filippo Tolli 210 $aCham$cSpringer$d2022 215 $axiii, 340 p.$cill.$d24 cm 410 1$1001VAN0030486$12001 $aSpringer monographs in mathematics$1210 $aBerlin [etc.]$cSpringer$d1989- 606 $a20-XX$xGroup theory and generalizations [MSC 2020]$3VANC019715$2MF 606 $a20C05$xGroup rings of finite groups and their modules (group-theoretic aspects) [MSC 2020]$3VANC022062$2MF 606 $a20C15$xOrdinary representations and characters [MSC 2020]$3VANC024138$2MF 610 $aCentral Group Extension$9KW:K 610 $aCharacter theory$9KW:K 610 $aClifford Theory$9KW:K 610 $aCohomology of Groups$9KW:K 610 $aFinite Groups$9KW:K 610 $aGroup extension$9KW:K 610 $aHecke algebra$9KW:K 610 $aHeisenberg Groups$9KW:K 610 $aInduced Representation$9KW:K 610 $aLie Ring$9KW:K 610 $aLittle Group Method$9KW:K 610 $aMackey Obstruction$9KW:K 610 $aMackey Theory$9KW:K 610 $aMetabelian Group$9KW:K 610 $aNilpotent groups$9KW:K 610 $aOrbit method$9KW:K 610 $aProjective Representation$9KW:K 610 $aSchur multiplier$9KW:K 610 $aUnitary 2-cocycle$9KW:K 610 $aUnitary Representation$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCeccherini-Silberstein$bTullio$3VANV106453$0503338 701 1$aScarabotti$bFabio$3VANV106454$0474783 701 1$aTolli$bFilippo$3VANV106455$0503339 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240726$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-13873-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0278103 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-Book 8879 $e08eMF8879 20240618 996 $aRepresentation Theory of Finite Group Extensions$94165479 997 $aUNICAMPANIA