LEADER 02484nam# 22005173i 450 001 VAN0277660 005 20240715113604.140 017 70$2N$a9783031178719 100 $a20240611d2022 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 0 $a1. / Anthony A. Ruffa, Bourama Toni 210 $aCham$cSpringer$d2022 215 $ax, 319 p.$cill.$d24 cm 410 1$1001VAN0123837$12001 $aSTEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health$1210 $aCham [etc.]$cSpringer$d2017- 461 1$1001VAN0277658$12001 $aInnovative Integrals and Their Applications$fAnthony A. Ruffa, Bourama Toni$1210 $aCham$cSpringer$1215 $avolumi$cill.$d24 cm$v1 606 $a33B20$xIncomplete beta and gamma functions (error functions, probability integral, Fresnel integrals) [MSC 2020]$3VANC037873$2MF 606 $a33C45$xOrthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [MSC 2020]$3VANC020291$2MF 606 $a33Cxx$xHypergeometric functions [MSC 2020]$3VANC022592$2MF 606 $a44A20$xIntegral transforms of special functions [MSC 2020]$3VANC023102$2MF 606 $a46F12$xIntegral transforms in distribution spaces [MSC 2020]$3VANC022655$2MF 610 $aBessel functions$9KW:K 610 $aCalculus$9KW:K 610 $aExponential integral functions$9KW:K 610 $aGamma functions$9KW:K 610 $aGaussian densities$9KW:K 610 $aHurwitz zeta function$9KW:K 610 $aHypergeometric functions$9KW:K 610 $aMathematica$9KW:K 610 $aMethod of exhaustion$9KW:K 610 $aNon-Gaussian distributions$9KW:K 610 $aPower substitution$9KW:K 610 $aRiemann zeta function$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aRuffa$bAnthony A.$3VANV095955$01264622 701 1$aToni$bBourama$3VANV080933$01739712 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240719$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-17871-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0277660 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-Book 8764 $e08eMF8764 20240618 996 $a1.$94164755 997 $aUNICAMPANIA