LEADER 00992nam0 2200301 i 450 001 VAN0014362 005 20070718120000.0 010 $a88-15-06311-0 020 $aIT$b98 10256 100 $a20031204d1998 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aGalileo$fStillman Drake 205 $aBologna : Il mulino$b[1998] 210 $d126 p. ; 21 cm 215 $aTrad. di Anna Colombo. 606 $aGalilei, Galileo$3VANC007567$2FI 620 $dBologna$3VANL000003 676 $a509.2$v21 700 1$aDrake$bStillman$3VANV010464$046395 712 $aIl Mulino $3VANV107886$4650 801 $aIT$bSOL$c20230616$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN0014362 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XXI.Ed.54 $e00 13466 20031205 996 $aGalileo$9219525 997 $aUNICAMPANIA LEADER 01757nam0 22004213i 450 001 VAN0277105 005 20240607101059.721 017 70$2N$a9783031079849 100 $a20240607d2022 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aDifferential Equations$ePractice Problems, Methods, and Solutions$fMehdi Rahmani-Andebili 210 $aCham$cSpringer$d2022 215 $axi, 105 p.$cill.$d24 cm 610 $aBoundary Value Problems$9KW:K 610 $aFirst order differential equations$9KW:K 610 $aFourier series$9KW:K 610 $aHigher Order Differential Equations$9KW:K 610 $aHomogeneous and Nonhomogeneous Equations$9KW:K 610 $aLaplace Transforms$9KW:K 610 $aMultilinear Algebra$9KW:K 610 $aOrdinary differential equations$9KW:K 610 $aPartial differential equations$9KW:K 610 $aSecond order differential equations$9KW:K 610 $aStochastic Ordinary Differential Equations$9KW:K 610 $aSystems of Differential Equations$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aRahmani-Andebili$bMehdi$3VANV201607$0850505 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-07984-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0277105 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-Book 8711 $e08eMF8711 20240610 996 $aDifferential Equations$92902810 997 $aUNICAMPANIA LEADER 01386nam2 22003253i 450 001 VAN00105308 005 20240806100728.461 010 $a88-453-0189-3 100 $a20160428d1979 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ2: ‰Ottimizzazione statica e dinamica$fErio Castagnoli, Lorenzo Peccati 210 $aMilano$cETAS libri$d1979 215 $a169 p.$d24 cm. 410 1$1001VAN00105319$12001 $aTesti universitari$1210 $aMilano$cETAS libri.$v54 461 1$1001VAN00105306$12001 $aMatematica per l'analisi economica$fErio Castagnoli, Lorenzo Peccati$1210 $aMilano$cETAS libri$1215 $avolumi$d22 cm.$v2 606 $aEconomia$xMetodi matematici$3VANC032285$2EC 606 $aEconomia matematica$3VANC032286$2EC 620 $dMilano$3VANL000284 676 $a330.0151$cEconomia. Principi matematici$v21 700 1$aCastagnoli$bErio$3VANV023134$055474 701 1$aPeccati$bLorenzo$3VANV019731$055475 712 $aEtas $3VANV108308$4650 801 $aIT$bSOL$c20240906$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$1IT-CE0106$2VAN03 912 $aVAN00105308 950 $aBIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$d03PREST VAc53 $e03 32318 20160428 996 $aOttimizzazione statica e dinamica$91439909 997 $aUNICAMPANIA