LEADER 02218nam0 22005413i 450 001 VAN0276611 005 20240603113730.516 017 70$2N$a9783031144592 100 $a20240603d2022 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aMartingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series$fLars-Erik Persson, George Tephnadze, Ferenc Weisz 210 $aCham$cBirkhäuser$cSpringer$d2022 215 $axvi, 626 p.$cill.$d24 cm 610 $aCesaro Means$9KW:K 610 $aFejer Means$9KW:K 610 $aHarmonic analysis$9KW:K 610 $aLebesgue Constants$9KW:K 610 $aLebesgue spaces$9KW:K 610 $aMartingale Hardy Spaces$9KW:K 610 $aMaximal operators$9KW:K 610 $aModulus of Continuity$9KW:K 610 $aNorlund Logarithmic Means$9KW:K 610 $aNorlund Means$9KW:K 610 $aPartial Sums of Vilenkin-Fourier Series$9KW:K 610 $aRiesz Logarithmic Means$9KW:K 610 $aStrong Convergence$9KW:K 610 $aVariable Lebesgue spaces$9KW:K 610 $aVariable Martingale Hardy Spaces$9KW:K 610 $aVilenkin Groups$9KW:K 610 $aVilenkin Systems$9KW:K 610 $aVilenkin-Fourier Coefficients$9KW:K 610 $aWeak-Lp Spaces$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aPersson$bLars-Erik$3VANV041992$0149302 701 1$aTephnadze$bGeorge$3VANV229354$01738591 701 1$aWeisz$bFerenc$3VANV095739$060660 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-14459-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0276611 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-Book 8598 $e08eMF8598 20240605 996 $aMartingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series$94160995 997 $aUNICAMPANIA LEADER 01713nam0 22003853i 450 001 VAN00254984 005 20240806101442.543 017 70$2N$a9783642861802 100 $a20230220d1970 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aDerivation and Martingales$fCharles A. Hayes, Christian Y. Pauc 210 $aBerlin$cSpringer$d1970 215 $aviii, 206 p.$d24 cm 410 1$1001VAN00254309$12001 $aErgebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge$1210 $aBerlin$cSpringer$1300 $aDal 1976 aggiunge il complemento tit.: A series of modern surveys in mathematics$v49 606 $a28-XX$xMeasure and integration [MSC 2020]$3VANC019878$2MF 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 610 $aDerivation$9KW:K 610 $aMartingale functions$9KW:K 610 $aMartingales$9KW:K 610 $aSemimartingales$9KW:K 610 $aTheorem$9KW:K 620 $dBerlin$3VANL000066 700 1$aHayes$bCharles A.$3VANV207959$059028 701 1$aPauc$bChristian Y.$3VANV207960$058128 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-642-86180-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00254984 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 5459 $e08eMF5459 20230301 996 $aDerivation and Martingales$93008660 997 $aUNICAMPANIA