LEADER 01153nam a2200325 i 4500 001 991000713169707536 005 20020507172624.0 008 950329s1982 uk ||| | eng 020 $a0521287022 035 $ab10746857-39ule_inst 035 $aLE01301115$9ExL 040 $aDip.to Matematica$beng 082 0 $a512.55 084 $aAMS 18D20 084 $aQA169 100 1 $aKelly, Gregory Maxwell$057769 245 10$aBasic concepts of enriched category theory /$cGregory Maxwell Kelly 260 $aCambridge :$bCambridge University Press,$c1982 300 $a245 p. :$bill. ;$c23 cm 490 0 $aLondon Mathematical Society lecture note series,$x0076-0552 ;$v64 500 $aBibliography: p. 231-238. 500 $aIncludes index 650 0$aCategory theory 650 0$aFunctor theory 907 $a.b10746857$b23-02-17$c28-06-02 912 $a991000713169707536 945 $aLE013 18D KEL11 (1982)$g1$i2013000026589$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10839203$z28-06-02 996 $aBasic concepts of enriched category theory$9381055 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$feng$guk $h0$i1 LEADER 02428nam0 22005653i 450 001 VAN0267393 005 20240116033156.978 017 70$2N$a9789400924383 100 $a20231121d1989 |0itac50 ba 101 $aeng 102 $aNL 105 $a|||| ||||| 200 1 $aTheory of Martingales$fR. Sh. Liptser, A. N. Shiryaev$gTransl. from the Russian by K. Dzjaparidze 210 $aDordrecht$cKluwer$d1989 215 $axiv, 792 p.$d24 cm 410 1$1001VAN0024456$12001 $aMathematics and its applications. Soviet series$1210 $aDordrecht$cReidel ; [poi] Kluwer$v49 500 1$3VAN0267394$aTeoriya martingalov$93644205 606 $a60Hxx$xStochastic analysis [MSC 2020]$3VANC019765$2MF 606 $a60G44$xMartingales with continuous parameter [MSC 2020]$3VANC020011$2MF 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 606 $a60B10$xConvergence of probability measures [MSC 2020]$3VANC022451$2MF 606 $a60Fxx$xLimit theorems in probability theory [MSC 2020]$3VANC024670$2MF 610 $aAdapted processes$9KW:K 610 $aClassification$9KW:K 610 $aErgodic theory$9KW:K 610 $aFiltration$9KW:K 610 $aLaw of large numbers$9KW:K 610 $aLocal martingales$9KW:K 610 $aMarkov Processes$9KW:K 610 $aMartingales$9KW:K 610 $aMixing$9KW:K 610 $aPoint processes$9KW:K 610 $aProbability distribution$9KW:K 610 $aQuadratic variations$9KW:K 610 $aSemimartingales$9KW:K 610 $aVariance$9KW:K 610 $afinite-dimensional distribution$9KW:K 620 $aNL$dDordrecht$3VANL000068 700 1$aLiptser$bRobert S.$3VANV045373$065960 701 1$aShiryaev$bAlbert N.$3VANV039954$0352262 702 1$aDzjaparidze$bK.$3VANV220024$4730 712 $aKluwer $3VANV108116$4650 801 $aIT$bSOL$c20240119$gRICA 856 4 $uhttps://doi.org/10.1007/978-94-009-2438-3$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0267393 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 7247 $e08eMF7247 20231127 996 $aTeoriya martingalov$93644205 997 $aUNICAMPANIA