LEADER 02320nam0 22005173i 450 001 VAN0264096 005 20231213102733.458 017 70$2N$a9783540393313 100 $a20230929d1987 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aˆAn ‰Approach to the Selberg Trace Formula via the Selberg Zeta-Function$fJürgen Fischer 210 $aBerlin$cSpringer$d1987 215 $aiv, 188 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1253 606 $a11-XX$xNumber theory [MSC 2020]$3VANC019688$2MF 606 $a58J50$xSpectral problems; spectral geometry; scattering theory on manifolds [MSC 2020]$3VANC021225$2MF 606 $a11F12$xAutomorphic forms, one variable [MSC 2020]$3VANC021440$2MF 606 $a11F72$xSpectral theory; trace formulas (e.g., that of Selberg) [MSC 2020]$3VANC025100$2MF 606 $a11M36$xSelberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas) [MSC 2020]$3VANC033153$2MF 610 $aAnalytic Number Theory$9KW:K 610 $aAutomorphic forms$9KW:K 610 $aBoundary Element Methods$9KW:K 610 $aCanon$9KW:K 610 $aDerivative$9KW:K 610 $aFactor$9KW:K 610 $aFinite$9KW:K 610 $aFinite Groups$9KW:K 610 $aFunctions$9KW:K 610 $aLaplace operators$9KW:K 610 $aNumber theory$9KW:K 610 $aSpectral Theory$9KW:K 610 $aconstants$9KW:K 610 $akernels$9KW:K 620 $dBerlin$3VANL000066 700 1$aFischer$bJürgen$3VANV218112$056736 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0077696$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0264096 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 6850 $e08eMF6850 20231003 996 $aApproach to the Selberg trace formula via the Selberg zeta-function$978544 997 $aUNICAMPANIA