LEADER 02411nam0 22004813i 450 001 VAN0263218 005 20240109041357.487 017 70$2N$a9783642617522 100 $a20230913d1984 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aDifferentiable manifolds$eforms, currents, harmonic forms$fGeorges de Rham$gtranslated from the French by F. R. Smith$gintroduction to the English edition by S. S. Chern 210 $aBerlin$cSpringer$d1984 215 $ax, 166 p.$d24 cm 410 1$1001VAN0024107$12001 $aGrundlehren der mathematischen Wissenschaften$eA series of comprehensive texts in mathematics$1210 $aBerlin [etc.]$cSpringer$v266 500 1$3VAN0263217$aVariétés Différentiables$9384786 606 $a57-XX$xManifolds and cell complexes [MSC 2020]$3VANC019671$2MF 606 $a58-XX$xGlobal analysis, analysis on manifolds [MSC 2020]$3VANC019758$2MF 606 $a58A25$xCurrents in global analysis [MSC 2020]$3VANC022482$2MF 606 $a58A14$xHodge theory in global analysis [MSC 2020]$3VANC023135$2MF 606 $a58Axx$xGeneral theory of differentiable manifolds [MSC 2020]$3VANC023312$2MF 606 $a58A10$xDifferential forms in global analysis [MSC 2020]$3VANC023317$2MF 606 $a55Nxx$xHomology and cohomology theories in algebraic topology [MSC 2020]$3VANC024062$2MF 606 $a58A12$xde Rham theory in global analysis [MSC 2020]$3VANC024063$2MF 606 $a58A05$xDifferentiable manifolds, foundations [MSC 2020]$3VANC024249$2MF 610 $aDifferentiable manifolds$9KW:K 610 $aManifolds$9KW:K 610 $aRiemannian manifolds$9KW:K 610 $aVarieties$9KW:K 620 $dBerlin$3VANL000066 700 1$aRham$bGeorges de$3VANV043089$046220 702 1$aSmith$bF. R.$3VANV043090$4730 702 1$aChern$bShiing-Shen$3VANV041009 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-642-61752-2$zhttps://doi.org/10.1007/978-3-642-61752-2 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0263218 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 6604 $e08eMF6604 20230927 996 $aVariétés différentiables$9384786 997 $aUNICAMPANIA