LEADER 02279nam0 2200481 i 450 001 VAN0110721 005 20230801123548.180 017 70$2N$a9783319636306 100 $a20170915d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aRamanujan summation of divergent series$fBernard Candelpergher 210 $a[Cham]$cSpringer$d2017 215 $aXXIII, 193 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2185 500 1$3VAN0234302$aRamanujan summation of divergent series$91466442 606 $a11M06$x$\zeta (s)$ and $L(s, \chi)$ [MSC 2020]$3VANC019707$2MF 606 $a40G05$xCesŕro, Euler, Nörlund and Hausdorff methods [MSC 2020]$3VANC023167$2MF 606 $a30B50$xDirichlet series, exponential series and other series in one complex variable [MSC 2020]$3VANC025275$2MF 606 $a11M35$xHurwitz and Lerch zeta functions [MSC 2020]$3VANC029226$2MF 606 $a30B40$xAnalytic continuation of one complex variable [MSC 2020]$3VANC032885$2MF 606 $a40D05$xGeneral theorems on summability [MSC 2020]$3VANC033178$2MF 606 $a40G10$xAbel, Borel and power series methods [MSC 2020]$3VANC033179$2MF 606 $a40Gxx$xSpecial methods of summability [MSC 2020]$3VANC033180$2MF 610 $aBorel Summation$9KW:K 610 $aDivergent$9KW:K 610 $aEuler Summation$9KW:K 610 $aEuler-MacLaurin formula$9KW:K 610 $aRamanujan$9KW:K 610 $aSeries$9KW:K 610 $aSummation$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCandelpergher$bBernard$3VANV085491$0739987 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-63630-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0110721 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2185 20170915 996 $aRamanujan summation of divergent series$91466442 997 $aUNICAMPANIA LEADER 01869nam0 22004093i 450 001 VAN0261840 005 20231103022251.827 017 70$2N$a9783540387831 100 $a20230724d1981 |0itac50 ba 101 $aeng$aFRE 102 $aDE 105 $a|||| ||||| 200 1 $aNon Commutative Harmonic Analysis and Lie Groups$eActes du Colloque d'Analyse Harmonique Non Commutative, 16 au 20 juin 1980 Marseille-Luminy$fedité par J. Carmona et M. Vergne 210 $aBerlin$cSpringer$d1981 215 $avi, 554 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v880 606 $a22-XX$xTopological groups, Lie groups [MSC 2020]$3VANC020459$2MF 606 $a43-XX$xAbstract harmonic analysis [MSC 2020]$3VANC021258$2MF 606 $a17-XX$xNonassociative rings and algebras [MSC 2020]$3VANC021290$2MF 606 $a00Bxx$xConference proceedings and collections of articles [MSC 2020]$3VANC021742$2MF 610 $aAnalysis$9KW:K 610 $aCohomology$9KW:K 610 $aHarmonic analysis$9KW:K 610 $aHomology$9KW:K 610 $aLie$9KW:K 620 $dBerlin$3VANL000066 702 1$aCarmona$bJacques$3VANV209923 702 1$aVergne$bMichčle$3VANV044706 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0090400$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0261840 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 6379 $e08eMF6379 20230802 996 $aNon commutative harmonic analysis and Lie groups$979998 997 $aUNICAMPANIA