LEADER 02781nam 2200517 450 001 9910830698703321 005 20190924175542.0 010 $a1-119-51755-9 010 $a1-119-51756-7 010 $a1-119-51754-0 035 $a(CKB)4100000008702114 035 $a(MiAaPQ)EBC5825594 035 $a(OCoLC)1117279178 035 $a(CaSebORM)9781119517535 035 $a(EXLCZ)994100000008702114 100 $a20190808d2019 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSemi-Riemannian geometry $ethe mathematical language of general relativity /$fStephen C. Newman (University of Alberta, Edmonton, Alberta, Canada) 205 $a1st edition 210 1$aHoboken, New Jersey :$cWiley,$d[2019] 210 4$dİ2019 215 $a1 online resource (656 pages) 311 $a1-119-51753-2 320 $aIncludes bibliographical references and index. 330 $aAn introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell?s equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity. STEPHEN C. NEWMAN is Professor Emeritus at the University of Alberta, Edmonton, Alberta, Canada. He is the author of Biostatistical Methods in Epidemiology and A Classical Introduction to Galois Theory, both published by Wiley. 606 $aSemi-Riemannian geometry 606 $aGeometry, Riemannian 606 $aManifolds (Mathematics) 606 $aGeometry, Differential 615 0$aSemi-Riemannian geometry. 615 0$aGeometry, Riemannian. 615 0$aManifolds (Mathematics) 615 0$aGeometry, Differential. 676 $a516.373 700 $aNewman$b Stephen C.$f1952-$0167034 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830698703321 996 $aSemi-Riemannian geometry$93984489 997 $aUNINA LEADER 01901nam# 22004693i 450 001 VAN0255854 005 20230525103957.699 017 70$2N$a9783540378020 100 $a20230315d1973 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 0 $a3. / edited by Willem Kuijk and Jean-Pierre Serre 210 $aBerlin$cSpringer$d1973 215 $a350 p.$d24 cm 461 1$1001VAN0255851$12001 $aModular Functions of One Variable$eProceedings International Summer School, University of Antwerp, RUCA, July 17-August 3, 1972$1210 $aBerlin$cSpringer$d1973$1215 $a4 volumi$d24 cm$v3 606 $a11-XX$xNumber theory [MSC 2020]$3VANC019688$2MF 606 $a14-XX$xAlgebraic geometry [MSC 2020]$3VANC019702$2MF 606 $a00Bxx$xConference proceedings and collections of articles [MSC 2020]$3VANC021742$2MF 610 $aArithmetic$9KW:K 610 $aCongruence$9KW:K 610 $aForms$9KW:K 610 $aFunctions$9KW:K 610 $aInterpolation$9KW:K 610 $aModular forms$9KW:K 610 $aOperators$9KW:K 610 $aPresentation$9KW:K 610 $aScheme$9KW:K 610 $aVolume$9KW:K 610 $aZeta functions$9KW:K 620 $dBerlin$3VANL000066 702 1$aKuijk$bWillem$3VANV209103 702 1$aSerre$bJean Pierre$3VANV022124 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-540-37802-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0255854 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 5718 $e08eMF5718 20230328 996 $a3$961479 997 $aUNICAMPANIA