LEADER 02422nam0 22004693i 450 001 VAN0255544 005 20230524120634.117 017 70$2N$a9783540381174 100 $a20230303d1972 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aHomotopy limits, completions and localizations$fA. K. Bousfield, D. M. Kan 210 $aBerlin$cSpringer$d1972 215 $av, 348 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v304 606 $a55-XX$xAlgebraic topology [MSC 2020]$3VANC019672$2MF 606 $a20E18$xLimits, profinite groups [MSC 2020]$3VANC021894$2MF 606 $a55Pxx$xHomotopy theory [MSC 2020]$3VANC024159$2MF 606 $a18G10$xResolutions; derived functors (category-theoretic aspects) [MSC 2020]$3VANC024577$2MF 606 $a18A30$xLimits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.) [MSC 2020]$3VANC029032$2MF 606 $a18A35$xCategories admitting limits (complete categories), functors preserving limits, completions [MSC 2020]$3VANC029033$2MF 606 $a20D15$xNilpotent groups, $p$-groups [MSC 2020]$3VANC029088$2MF 606 $a55P10$xHomotopy equivalences in algebraic topology [MSC 2020]$3VANC033739$2MF 606 $a55Txx$xSpectral sequences in algebraic topology [MSC 2020]$3VANC033973$2MF 606 $a55P05$xHomotopy extension properties, cofibrations in algebraic topology [MSC 2020]$3VANC037388$2MF 610 $aFibrations$9KW:K 610 $aFinite$9KW:K 610 $aFunctions$9KW:K 610 $aHomotopy$9KW:K 620 $dBerlin$3VANL000066 700 1$aBousfield$bAldridge K.$3VANV076693$0478869 701 1$aKan$bDaniel M.$3VANV076694$0294712 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-540-38117-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0255544 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 5631 $e08eMF5631 20230313 996 $aHomotopy limits, completions and localizations$93041395 997 $aUNICAMPANIA