LEADER 01416nam0 2200325 i 450 001 VAN0107719 005 20230406105929.309 017 70$2N$a978-3-319-15796-2 100 $a20170209d2015 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aProgress in Automation, Robotics and Measuring Techniques$eControl and Automation$fRoman Szewczyk, Cezary Zieli?ski, Ma?gorzata Kaliczy?ska Editors 205 $aCham : Springer, 2015 210 $aXII$d358 p. ; 24 cm 215 410 1$1001VAN0107702$12001 $aAdvances in Intelligent Systems and Computing$1210 $aBerlin$cSpringer$d2012-$v350 620 $aCH$dCham$3VANL001889 702 1$aKaliczy?ska$bMa?gorzata$3VANV083104 702 1$aSzewczyk$bRoman$3VANV083105 702 1$aZieli?ski$bCezary$3VANV083103 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://link.springer.com/book/10.1007%2F978-3-319-15796-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN0107719 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 522 $e15EB 522 20170209 996 $aProgress in Automation, Robotics and Measuring Techniques$91407674 997 $aUNICAMPANIA LEADER 02542nam0 22005653i 450 001 VAN0249630 005 20230531094951.963 017 70$2N$a9783030438449 100 $a20220906d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $ap-adic Hodge Theory$fBhargav Bhatt, Martin Olsson editors 210 $aCham$cSpringer$d2020 215 $avii, 319 p.$cill.$d24 cm 410 1$1001VAN0114770$12001 $aSimons Symposia$1210 $aBerlin [etc.]$cSpringer 500 1$3VAN0249632$ap-adic Hodge Theory$91936200 606 $a11G25$xVarieties over finite and local fields [MSC 2020]$3VANC021732$2MF 606 $a14D10$xArithmetic ground fields (finite, local, global) and families or fibrations [MSC 2020]$3VANC021829$2MF 606 $a14G20$xLocal ground fields in algebraic geometry [MSC 2020]$3VANC021831$2MF 606 $a14F20$xÉtale and other Grothendieck topologies and (co)homologies [MSC 2020]$3VANC023775$2MF 606 $a14F40$xde Rham cohomology and algebraic geometry [MSC 2020]$3VANC023897$2MF 606 $a14G22$xRigid analytic geometry [MSC 2020]$3VANC024467$2MF 606 $a14F30$x$p$-adic cohomology, crystalline cohomology [MSC 2020]$3VANC025578$2MF 610 $aAlgebraic Topology$9KW:K 610 $aCohomology$9KW:K 610 $aGalois representations$9KW:K 610 $aHochschild Homology$9KW:K 610 $aIntegral p-adic Hodge theory$9KW:K 610 $aLocal ground fields$9KW:K 610 $aPerfectoid$9KW:K 610 $aPrismatic cohomology$9KW:K 610 $aRigid analytic geometry$9KW:K 610 $aRings of differential operators$9KW:K 610 $aTelative Fontaine-Laffaille theory$9KW:K 610 $aWitt vectors$9KW:K 610 $ade Rham-Witt complex$9KW:K 610 $aq-deformation$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aBhatt$bBhargav$3VANV204148 702 1$aOlsson$bMartin C.$3VANV053015 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-43844-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0249630 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4783 $e08eMF4783 20220906 996 $aP-adic Hodge Theory$91936200 997 $aUNICAMPANIA