LEADER 01450nam 2200337 n 450 001 996390869403316 005 20200824121833.0 035 $a(CKB)4940000000106461 035 $a(EEBO)2240860303 035 $a(UnM)99859730e 035 $a(UnM)99859730 035 $a(EXLCZ)994940000000106461 100 $a19850531d1643 uh | 101 0 $aeng 135 $aurbn||||a|bb| 200 13$aAn ordinance of the Lords and Commons assembled in Parliament$b[electronic resource] $efor the speedy supply of monies within the city of London, and liberties thereof, for the reliefe and maintenance of the armies raised and to be raised for the necessary defence of the city and liberties aforesaid. Die Veneris, 18. August. 1643. Ordered by the Lord Mayor and the Militia of London, that this ordinance be forthwith printed and published 210 $aPrinted at London $cby Richard Cotes$d1643 215 $a[2], 5, [1] p 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 606 $aTaxation$xLaw and legislation$zEngland 607 $aGreat Britain$xHistory$yCivil War, 1642-1649$vSources$vEarly works to 1800 615 0$aTaxation$xLaw and legislation 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996390869403316 996 $aAn ordinance of the Lords and Commons assembled in Parliament$92298865 997 $aUNISA LEADER 10937nam 2200589 450 001 9910488722403321 005 20230510093405.0 010 $a3-030-75785-4 035 $a(CKB)5590000000516497 035 $a(MiAaPQ)EBC6675929 035 $a(Au-PeEL)EBL6675929 035 $a(OCoLC)1260346952 035 $a(PPN)269152792 035 $a(EXLCZ)995590000000516497 100 $a20220327d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFelix Klein $evisions for mathematics, applications, and education /$fRenate Tobies ; revised by the author and translated by Valentine A. Pakis 210 1$aCham, Switzerland :$cSpringer,$d[2021] 210 4$d©2021 215 $a1 online resource (697 pages) 225 1 $aVita Mathematica ;$vVolume 20 311 $a3-030-75784-6 327 $aIntro -- PREFACE -- CONTENTS -- 1 INTRODUCTION -- 1.1 THE STATE OF RESEARCH -- 1.2 GUIDING QUESTIONS -- 1.3 EDITORIAL REMARKS -- Acknowledgements -- 2 FORMATIVE GROUPS -- 2.1 THE KLEIN-KAYSER FAMILY -- 2.1.1 A Royalist and Frugal Westphalian Upbringing -- 2.1.2 Talent in School and Wide Interests as Gifts from His Mother's Side -- 2.1.3 Felix Klein and His Siblings -- 2.2 SCHOOL YEARS IN DU?SSELDORF -- 2.2.1 Earning His Abitur from a Gymnasium at the Age of Sixteen -- 2.2.2 Examination Questions in Mathematics -- 2.2.3 Interests in Natural Science During His School Years -- 2.3 STUDIES AND DOCTORATE IN BONN -- 2.3.1 Coursework and Seminar Awards -- 2.3.2 Assistantship and a Reward for Winning a Physics Contest -- 2.3.3 Assisting Julius Plu?cker's Research in Geometry -- 2.3.4 Doctoral Procedure -- 2.4 JOINING ALFRED CLEBSCH'S THOUGHT COMMUNITY -- 2.4.1 The Clebsch School -- 2.4.2 The Journal Mathematische Annalen -- 2.4.3 Articles on Line Geometry, 1869 -- 2.5 BROADENING HIS HORIZONS IN BERLIN -- 2.5.1 The Professors in Berlin and Felix Klein -- 2.5.2 Acquaintances from the Mathematical Union: Kiepert, Lie, Stolz -- 2.5.3 Cayley's Metric and Klein's Non-Euclidean Interpretation -- 2.6 IN PARIS WITH SOPHUS LIE -- 2.6.1 Felix Klein and French Mathematicians -- 2.6.2 Collaborative Work with Sophus Lie -- 2.6.2.1 Notes on W-Configurations -- 2.6.2.2 Principal Tangent Curves of the Kummer Surface -- 2.6.3 A Report on Mathematics in Paris -- 2.7 THE FRANCO-PRUSSIAN WAR AND KLEIN'S HABILITATION -- 2.7.1 Wartime Service as a Paramedic and Its Effects -- 2.7.2 Habilitation -- 2.8 TIME AS A PRIVATDOZENT IN GO?TTINGEN -- 2.8.1 Klein's Teaching Activity and Its Context -- 2.8.2 An Overview of Klein's Research Results as a Privatdozent -- 2.8.3 Discussion Groups -- 2.8.3.1 A Three-Man Club with Clebsch and Riecke. 327 $a2.8.3.2 The Mathematical and Natural-Scientific Student Union -- 2.8.3.3 A Scientific Circle: Eskimo -- 2.8.3.4 The "Social Activity" of Bringing Mathematicians Together -- 3 A PROFESSORSHIP AT THE UNIVERSITY OF ERLANGEN -- 3.1 RESEARCH TRENDS AND DOCTORAL STUDENTS -- 3.1.1 The Vision of the Erlangen Program -- 3.1.2 Klein's Students in Erlangen -- 3.1.3 New Research Trends -- 3.1.3.1 On a New Type of Riemann Surface -- 3.1.3.2 The Theory of Equations -- 3.2 INAUGURAL LECTURE: A PLAN FOR MATHEMATICAL EDUCATION -- 3.3 FIRST TRIP TO GREAT BRITAIN, 1873 -- 3.4 TRIPS TO ITALY -- 3.5 DEVELOPING THE MATHEMATICAL INSTITUTION -- 3.6 FAMILY MATTERS -- 3.6.1 His Friends Marry and Klein Follows Suit -- 3.6.2 Klein's Father-in-Law, the Historian Karl Hegel -- 3.6.3 Anna Hegel, Felix Klein, and Their Family -- 4 A PROFESSORSHIP AT THE POLYTECHNIKUM IN MUNICH -- 4.1 A NEW INSTITUTE AND NEW TEACHING ACTIVITY -- 4.1.1 Creating a Mathematical Institute -- 4.1.2 Reorganizing the Curriculum -- 4.2 DEVELOPING HIS MATHEMATICAL INDIVIDUALITY -- 4.2.1 The Icosahedron Equation -- 4.2.2 Number Theory -- 4.2.3 Elliptic Modular Functions -- 4.2.4 Klein's Circle of Students in Munich -- 4.2.4.1 Phase I: 1875-1876 -- 4.2.4.2 Phase II: 1876-1880 -- 4.3 DISCUSSION GROUPS IN MUNICH -- 4.3.1 A Mathematical Discussion Group with Engineers and Natural Scientists -- 4.3.2 The Mathematical Student Union and the Mathematical Society -- 4.3.3 The Meeting of Natural Scientists in Munich, 1877 -- 4.4 "READY AGAIN FOR A UNIVERSITY IN A SMALL CITY" -- 5 A PROFESSORSHIP FOR GEOMETRY IN LEIPZIG -- 5.1 KLEIN'S START IN LEIPZIG AND HIS INAUGURAL ADDRESS -- 5.2 CREATING A NEW MATHEMATICAL INSTITUTION -- 5.3 TEACHING PROGRAM -- 5.3.1 Lectures: Organization, Reorientation, and Deviation from the Plan -- 5.3.2 The Mathematical Colloquium / Exercises / Seminar -- 5.4 THE KLEINIAN "FLOCK". 327 $a5.4.1 Post-Doctoral Mathematicians -- 5.4.2 Klein's Foreign Students in Leipzig -- 5.4.2.1 The First Frenchman and the First Briton -- 5.4.2.2 The First Americans -- 5.4.2.3 The Italians -- 5.4.2.4 Mathematicians from Switzerland and Austria-Hungary -- 5.4.2.5 Russian and Other Eastern European Contacts -- 5.5 FIELDS OF RESEARCH -- 5.5.1 Mathematical Physics / Physical Mathematics -- 5.5.1.1 Lame?'s Function, Potential Theory, and Carl Neumann -- 5.5.1.2 On Riemann's Theory of Algebraic Functions and Their Integrals -- 5.5.2 Looking Toward Berlin -- 5.5.2.1 Gathering Sources -- 5.5.2.2 The Dirichlet Principle -- 5.5.2.3 Klein's Seminar on the Theory of Abelian Functions (1882) -- 5.5.2.4 Openness vs. Partiality -- 5.5.3 Looking Toward France -- 5.5.3.1 French Contributors to Mathematische Annalen -- 5.5.3.2 Klein's Correspondence with Poincare? -- 5.5.4 Three Fundamental Theorems -- 5.5.4.1 The Loop-Cut Theorem (Ru?ckkehrschnitttheorem) -- 5.5.4.2 Theorem of the Limit-Circle (Grenzkreistheorem) -- 5.5.4.3 The (General) Fundamental Theorem -- 5.5.4.4 Remarks on the Proofs -- 5.5.5 The Polemic about and with Lazarus Fuchs -- 5.5.6 The Icosahedron Book -- 5.5.7 A Book on the Theory of Elliptic Modular Functions -- 5.5.7.1 Supplementing the Theory -- 5.5.7.2 Who Should Be the Editor? - Georg Pick -- 5.5.8 Hyperelliptic and Abelian Functions -- 5.6 FELIX KLEIN AND ALFRED ACKERMANN-TEUBNER -- 5.7 FELIX KLEIN IN LEIPZIG'S INTELLECTUAL COMMUNITIES -- 5.7.1 A Mathematicians' Circle -- 5.7.2 The Societas Jablonoviana -- 5.7.3 The Royal Saxon Society of Sciences in Leipzig -- 5.8 TURNING HIS BACK ON LEIPZIG -- 5.8.1 Weighing Offers from Oxford and Johns Hopkins -- 5.8.2 The Physicist Eduard Riecke Arranges Klein's Move to Go?ttingen -- 5.8.3 The Appointment of Sophus Lie as Klein's Successor - and the Reactions. 327 $a6 THE START OF KLEIN'S PROFESSORSHIP IN GO?TTINGEN, 1886-1892 -- 6.1 FAMILY CONSIDERATIONS -- 6.2 DEALING WITH COLLEAGUES, TEACHING, AND CURRICULUM PLANNING -- 6.2.1 The Relationship Between Klein and Schwarz -- 6.2.2 The Go?ttingen Privatdozenten Ho?lder and Schoenflies -- 6.2.3 Klein's Teaching in Context -- 6.3 INDEPENDENT AND COLLABORATIVE RESEARCH -- 6.3.1 The Theory of Finite Groups of Linear Substitutions: The Theory of Solving Equations of Higher Degree -- 6.3.2 Hyperelliptic and Abelian Functions -- 6.3.3 The Theory of Elliptic Modular Functions (Monograph) -- 6.3.4 The Theory of Automorphic Functions (Monograph) -- 6.3.5 The Theory of Lame? Functions and Potential Theory -- 6.3.6 Refreshing His Work on Geometry -- 6.3.7 Visions: Internationality, Crystallography, Hilbert's Invariant Theory -- 6.3.7.1 An Eye on Developments Abroad -- 6.3.7.2 Arthur Schoenflies and Crystallography -- 6.3.7.3 Felix Klein and Hilbert's Invariant Theory -- 6.4 BRINGING PEOPLE AND INSTITUTIONS TOGETHER -- 6.4.1 The Professorium in Go?ttingen -- 6.4.2 A Proposal to Relocate the Technische Hochschule in Hanover to Go?ttingen -- 6.4.3 The Idea of Reorganizing the Go?ttingen Society of Sciences -- 6.4.4 Felix Klein and the Founding of the German Mathematical Society -- 6.5 THE PIVOTAL YEAR OF 1892 -- 6.5.1 Refilling Vacant Professorships in Prussia -- 6.5.1.1 Berlin, Breslau, and Klein's System for Classifying Styles of Thought -- 6.5.1.2 Hiring a Successor for H.A. Schwarz in Go?ttingen -- 6.5.2 A Job Offer from the University of Munich and the Consequences -- 7 SETTING THE COURSE, 1892/93-1895 -- 7.1 KLEIN'S ASSISTANTS AND HIS PRINCIPLES FOR CHOOSING THEM -- 7.2 THE GO?TTINGEN MATHEMATICAL SOCIETY -- 7.3 TURNING TO SECONDARY SCHOOL TEACHERS -- 7.4 A TRIP TO THE UNITED STATES -- 7.4.1 The World's Fair in Chicago and the Mathematical Congress. 327 $a7.4.2 Twelve Lectures by Klein: The Evanston Colloquium -- 7.4.3 Traveling from University to University -- 7.4.4 Repercussions -- 7.5 THE BEGINNINGS OF WOMEN STUDYING MATHEMATICS -- 7.6 ACTUARIAL MATHEMATICS AS A COURSE OF STUDY -- 7.7 CONTACTING ENGINEERS AND INDUSTRIALISTS -- 7.8 THE ENCYKLOPA?DIE PROJECT -- 7.9 KLEIN SUCCEEDS IN HIRING DAVID HILBERT -- 8 THE FRUITS OF KLEIN'S EFFORTS, 1895-1913 -- 8.1 A CENTER FOR MATHEMATICS, NATURAL SCIENCES, AND TECHNOLOGY -- 8.1.1 The Go?ttingen Association -- 8.1.2 Applied Mathematics in the New Examination Regulations and the Consequences -- 8.1.3 Aeronautical Research -- 8.2 MAINTAINING HIS SCIENTIFIC REPUTATION -- 8.2.1 Automorphic Functions (Monograph) -- 8.2.2 Geometric Number Theory -- 8.2.3 A Monograph on the Theory of the Spinning Top -- 8.2.4 Inspiring Ideas in the Fields of Mathematical Physics and Technology -- 8.2.4.1 Hydrodynamics / Hydraulics -- 8.2.4.2 Statics -- 8.2.4.3 The Theory of Friction -- 8.2.4.4 The Special Theory of Relativity -- 8.3 PROGRAM: THE HISTORY, PHILOSOPHY, PSYCHOLOGY, ANDINSTRUCTION OF MATHEMATICS -- 8.3.1 The History of Mathematics -- 8.3.2 Philosophical Aspects -- 8.3.3 Psychological-Epistemological Classifications -- 8.3.4 The "Kleinian" Educational Reform -- 8.3.4.1 Suggestions for Reform -- 8.3.4.2 A Polemic about the Teaching of Analysis at the University -- 8.4 INTERNATIONAL SCIENTIFIC COOPERATION -- 8.5 EARLY RETIREMENT AND HONORS -- 8.5.1 Recovering and Working in the Hahnenklee Sanatorium -- 8.5.2 Max Liebermann's Portrait of Felix Klein -- 8.5.3 The Successors to Klein's Professorship -- 9 THE FIRST WORLD WAR AND THE POSTWAR PERIOD -- 9.1 POLITICAL ACTIVITY DURING THE FIRST WORLD WAR -- 9.1.1 The Vows of Allegiance of German Professors to Militarism -- 9.1.2 A Plea for Studying Abroad. 327 $a9.2 HISTORY OF MATHEMATICS, THE "CRY FOR HELP OF MODERNPHYSICS," AND EDITION PROJECTS. 410 0$aVita mathematica ;$vVolume 20. 606 $aMatemàtics$2thub 606 $aMathematicians$zGermany$vBiography 606 $aReformers$zGermany$vBiography 607 $aAlemanya$2thub 608 $aBiografies$2thub 608 $aLlibres electrònics$2thub 615 7$aMatemàtics 615 0$aMathematicians 615 0$aReformers 676 $a510.92 700 $aTobies$b Renate$0535371 702 $aPakis$b Valentine A. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910488722403321 996 $aFelix Klein$9922483 997 $aUNINA LEADER 02374nam0 22005653i 450 001 VAN0248550 005 20230529095158.195 017 70$2N$a9783030411534 100 $a20220725d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆA ‰Course in Algebraic Error-Correcting Codes$fSimeon Ball 210 $aCham$cBirkhäuser$cSpringer$d2020 215 $axiii, 177 p.$cill.$d24 cm 410 1$1001VAN0103268$12001 $aCompact textbooks in mathematics$1210 $aBasel [etc.]$cBirkhäuser 500 1$3VAN0248551$aˆA ‰Course in Algebraic Error-Correcting Codes$92983605 606 $a94-XX$xInformation and communication theory, circuits [MSC 2020]$3VANC019701$2MF 606 $a94Bxx$xTheory of error-correcting codes and error-detecting codes [MSC 2020]$3VANC023595$2MF 610 $aAlgebraic error-correcting codes$9KW:K 610 $aAlgebraic geometric codes$9KW:K 610 $aBlock codes$9KW:K 610 $aCoding theory$9KW:K 610 $aCoding theory error correction$9KW:K 610 $aCyclic code$9KW:K 610 $aCyclic code error detection$9KW:K 610 $aError-Correcting Codes$9KW:K 610 $aExpanders$9KW:K 610 $aFinite fields$9KW:K 610 $aLDPC codes$9KW:K 610 $aLinear Codes$9KW:K 610 $aMDS codes$9KW:K 610 $aMasters level error-correcting codes$9KW:K 610 $aReed-Muller codes$9KW:K 610 $aReed-Muller error-correcting codes$9KW:K 610 $aShannon's theorem$9KW:K 610 $aShannon-Hartley theorem$9KW:K 610 $ap-adic codes$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aBall$bSimeon$3VANV076110$0978508 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-41153-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0248550 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4518 $e08eMF4518 20220725 996 $aCourse in Algebraic Error-Correcting Codes$92983605 997 $aUNICAMPANIA