LEADER 01102nam0 22002773i 450 001 VAN0243642 005 20220323010908.921 017 70$2N$a978-981-16-1228-2 100 $a20220323d2021 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aClinical Neurological Examination and Localization$fVinit Suri 210 $aSingapore$cSpringer$d2021 215 $aXIII, 144 p.$cill.$d24 cm 620 $aSG$dSingapore$3VANL000061 700 1$aSuri$bVinit$3VANV199050$0849781 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://link.springer.com/book/10.1007/978-981-16-1228-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN0243642 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 8784 $e15EB 8784 20220323 996 $aClinical Neurological Examination and Localization$91897439 997 $aUNICAMPANIA LEADER 02488nam0 22005173i 450 001 VAN00274601 005 20240806101540.149 017 70$2N$a9783030665159 100 $a20240409d2021 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aBlack Box Optimization, Machine Learning, and No-Free Lunch Theorems$fPanos M. Pardalos, Varvara Rasskazova, Michael N. Vrahatis editors 210 $aCham$cSpringer$d2021 215 $ax, 388 p.$cill.$d24 cm 410 1$1001VAN00067197$12001 $aSpringer optimization and its applications$1210 $aBerlin [etc.]$cSpringer$d2006-$v170 606 $a00B15$xCollections of articles of miscellaneous specific interest [MSC 2020]$3VANC023985$2MF 606 $a68-XX$xComputer science [MSC 2020]$3VANC019670$2MF 606 $a68T05$xLearning and adaptive systems in artificial intelligence [MSC 2020]$3VANC023390$2MF 606 $a90-XX$xOperations research, mathematical programming [MSC 2020]$3VANC025650$2MF 606 $a90C59$xApproximation methods and heuristics in mathematical programming [MSC 2020]$3VANC034026$2MF 610 $aBlack box optimization$9KW:K 610 $aData driven computation$9KW:K 610 $aData sciences problems$9KW:K 610 $aDeep Learning$9KW:K 610 $aFuzzy Optimization$9KW:K 610 $aMachine learning$9KW:K 610 $aNo-free lunch theorems$9KW:K 610 $aNon-free theorems in machine learning$9KW:K 610 $aNon-free theorems in optimization$9KW:K 610 $aStochastic Optimization$9KW:K 610 $aTuning algorithms$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aPardalos$bPanos M.$3VANV038535 702 1$aRasskazova$bVarvara$3VANV227032 702 1$aVrahatis$bMichael N.$3VANV227033 712 $aSpringer $3VANV108073$4650 790 1$aPardalos, P. M.$zPardalos, Panos M.$3VANV063873 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-030-66515-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00274601 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 8163 $e08eMF8163 20240412 996 $aBlack box optimization, machine learning, and no-free lunch theorems$92586334 997 $aUNICAMPANIA LEADER 01064nam0 22003013i 450 001 VAN00294758 005 20250805123045.107 010 $a978-88-288-6402-8 100 $a20250610d2024 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 181 $ai$b e 182 $an 183 $anc 200 1 $aˆL'‰arbitrato$fMarco Farina 210 $aMilano$cGiuffrè Francis Lefebvre$d2024 215 $aXI, 390 p.$d24 cm 410 1$1001VAN00276104$12001 $aˆLa ‰riforma del processo civile$1210 $aMilano: Giuffrè$d2024- 620 $dMilano$3VANL000284 700 1$aFarina$bMarco$3VANV018329$0276032 712 $aGiuffrè Francis Lefebvre $3VANV114891$4650 801 $aIT$bSOL$c20250808$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN00294758 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XVI.Ei.117 $e00UBG15643 20250610 996 $aArbitrato$94385952 997 $aUNICAMPANIA