LEADER 01068nam0 2200289 i 450 001 VAN0066863 005 20090121120000.0 010 $a978-88-203-3877-0 100 $a20090121d2007 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aHeritage e turismo$fDallen J. Timothy, Stephen W. Boyd 205 $aEd. italiana$fa cura di Rossana Bonadei 210 $aMilano$cHoepli$d2007 215 $aXXII, 261 p.$d24 cm. 620 $dMilano$3VANL000284 700 1$aTimothy$bDallen J.$3VANV053126$0275540 701 1$aBoyd$bStephen W.$3VANV053127$0283270 702 1$aBonadei$bRossana$3VANV053128 712 $a*Hoepli $3VANV108498$4650 801 $aIT$bSOL$c20240614$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$1IT-CE0103$2VAN07 912 $aVAN0066863 950 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$d07CONS Yd 2239 $e07 18663 20090121 996 $aHeritage e turismo$968425 997 $aUNICAMPANIA LEADER 02892nam0 22005893i 450 001 VAN0234372 005 20230801024728.248 017 70$20$a9783030789770 100 $a20211112d2021 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aHomotopy Theory and Arithmetic Geometry ? Motivic and Diophantine Aspects$eLMS-CMI Research School, London, July 2018$fFrank Neumann, Ambrus Pál editors 210 $aCham$cSpringer$d2021 215 $aix, 218 p.$cill.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2292 500 1$3VAN0234373$aHomotopy Theory and Arithmetic Geometry ? Motivic and Diophantine Aspects$91907597 606 $a55-XX$xAlgebraic topology [MSC 2020]$3VANC019672$2MF 606 $a19-XX$x$K$-theory [MSC 2020]$3VANC019735$2MF 606 $a14Cxx$xCycles and subschemes [MSC 2020]$3VANC021426$2MF 606 $a11Gxx$xArithmetic algebraic geometry (Diophantine geometry) [MSC 2020]$3VANC021463$2MF 606 $a14Gxx$xArithmetic problems in algebraic geometry; Diophantine geometry [MSC 2020]$3VANC021799$2MF 606 $a14Fxx$x(Co)homology theory in algebraic geometry [MSC 2020]$3VANC023895$2MF 610 $aBrauer-Manin obstruction$9KW:K 610 $aContractible algebraic varieties$9KW:K 610 $aEnumerative geometry$9KW:K 610 $aEtale homotopy$9KW:K 610 $aEtale motives$9KW:K 610 $aGrothendieck-Lefschetz trace formula$9KW:K 610 $aGrothendieck-Verdier duality$9KW:K 610 $aInfinity topoi$9KW:K 610 $aIntersection theory$9KW:K 610 $aMilnor number$9KW:K 610 $aMotivic degree$9KW:K 610 $aMotivic homotopy$9KW:K 610 $aRational Points$9KW:K 610 $aShape theory$9KW:K 610 $aStable homotopy$9KW:K 610 $aUnstable homotopy$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aNeumann$bFrank$3VANV083463 702 1$aPál$bAmbrus$3VANV089242 712 12$aLMS-CMI Research School on Homotopy Theory and Arithmetic Geometry: Motivic and Diophantine Aspects$f2018$e London, UK$3VANV194087 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-78977-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 912 $fN 912 $aVAN0234372 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2292 20211112 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 8265 $e08eMF8265 20240430 996 $aHomotopy Theory and Arithmetic Geometry ? Motivic and Diophantine Aspects$91907597 997 $aUNICAMPANIA