LEADER 02251nam0 22004573i 450 001 VAN0229422 005 20230605113111.957 017 70$2N$a9783030527150 100 $a20211019d2020 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aNeural-Network Simulation of Strongly Correlated Quantum Systems$eDoctoral Thesis accepted by Heidelberg University, Heidelberg, Germany$fStefanie Czischek 210 $aCham$cSpringer$d2020 215 $axv, 205 p.$cill.$d24 cm 410 1$1001VAN0104193$12001 $aSpringer theses$erecognizing outstanding Ph.D. research$1210 $aBerlin$cSpringer$d2010- 500 1$3VAN0229423$aNeural-Network Simulation of Strongly Correlated Quantum Systems$91882031 606 $a68-XX$xComputer science [MSC 2020]$3VANC019670$2MF 606 $a82C22$xInteracting particle systems in time-dependent statistical mechanics [MSC 2020]$3VANC025064$2MF 606 $a82C32$xNeural nets applied to problems in time-dependent statistical mechanics [MSC 2020]$3VANC035731$2MF 606 $a68T07$xArtificial neural networks and deep learning [MSC 2020]$3VANC036862$2MF 610 $aArtificial Neural Networks$9KW:K 610 $aNeural-Network Quantum States$9KW:K 610 $aNeuromorphic Hardware$9KW:K 610 $aQuantum machine learning$9KW:K 610 $aQuantum many-body systems$9KW:K 610 $aQuantum spin systems$9KW:K 610 $aQubits$9KW:K 610 $aSpiking Neurons$9KW:K 610 $aSpin-1/2 Particles$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCzischek$bStefanie$3VANV191732$0843414 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-030-52715-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0229422 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 4300 $e08eMF4300 20211019 996 $aNeural-Network Simulation of Strongly Correlated Quantum Systems$91882031 997 $aUNICAMPANIA LEADER 01861nam0 2200397 i 450 001 VAN00114404 005 20241121085157.789 017 70$2N$a9783319496672 100 $a20180202d2016 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆAn ‰introduction to linear ordinary differential equations using the impulsive response method and factorization$fRoberto Camporesi 210 $aCham$cPolitecnico di Torino$cSpringer$d2016 215 $aVII, 120 p.$cill.$d24 cm 410 1$1001VAN00114405$12001 $aPoliTO Springer Series$fPolitecnico di Torino$1210 $aBerlin$cSpringer$d2016- 500 1$3VAN00241926$aˆAn ‰introduction to linear ordinary differential equations using the impulsive response method and factorization$91523134 606 $a34-XX$xOrdinary differential equations [MSC 2020]$3VANC021251$2MF 606 $a34A30$xLinear ordinary differential equations and systems, general [MSC 2020]$3VANC022393$2MF 610 $aCostant coefficients$9KW:K 610 $aDifferential operators$9KW:K 610 $aFactorization$9KW:K 610 $aImpulsive response$9KW:K 610 $aMatrix theory$9KW:K 610 $aOrdinary Differential Equations$9KW:K 610 $aVariable coefficients$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCamporesi$bRoberto$3VANV088498$0606435 712 $aPolitecnico di Torino $3VANV110825$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250411$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-49667-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 912 $fN 912 $aVAN00114404 996 $aIntroduction to linear ordinary differential equations using the impulsive response method and factorization$91523134 997 $aUNICAMPANIA