LEADER 01080nam0 22002773i 450 001 VAN0132126 005 20240312120328.892 010 $a978-88-610-5467-7 100 $a20201210d2020 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆLa ‰riconquista$eperchè abbiamo perso l'Europa e come possiamo riprendercela$fFrancesco Saraceno 210 $aRoma$cLuiss University$d2020 215 $a224 p.$d21 cm. 410 1$1001VAN0119143$12001 $aˆI ‰capitelli$1210 $aRoma$cLUISS University 606 $aEuropa$xEconomia$xSec. 21.$3VANC035972$2SG 620 $dRoma$3VANL000360 700 1$aSaraceno$bFrancesco$3VANV091528$0761366 712 $aLuiss $3VANV225087$4650 801 $aIT$bSOL$c20240315$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN0132126 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XXI.Ef.35 $e00UBG5873 20201210 996 $aRiconquista$91761648 997 $aUNICAMPANIA LEADER 02425nam0 22005293i 450 001 VAN00267640 005 20250228113249.680 017 70$2N$a9781461263982 100 $a20231123d1972 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aIntroduction to lie algebras and representation theory$fJames E. Humphreys 210 $aNew York$cSpringer$d1972 215 $axiii, 173 p.$cill.$d24 cm 410 1$1001VAN00023579$12001 $aGraduate texts in mathematics$1210 $aNew York [etc.]$cSpringer$d1950-$v9 606 $a17-XX$xNonassociative rings and algebras [MSC 2020]$3VANC021290$2MF 606 $a17B05$xStructure theory for Lie algebras and superalgebras [MSC 2020]$3VANC024068$2MF 606 $a17B10$xRepresentations of Lie algebras and Lie superalgebras, algebraic theory (weights) [MSC 2020]$3VANC024337$2MF 606 $a17B20$xSimple, semisimple, reductive (super)algebras [MSC 2020]$3VANC024166$2MF 606 $a20G05$xRepresentation theory for linear algebraic groups [MSC 2020]$3VANC022417$2MF 606 $a20G40$xLinear algebraic groups over finite fields [MSC 2020]$3VANC023977$2MF 606 $a22E60$xLie algebras of Lie groups [MSC 2020]$3VANC024327$2MF 610 $aAlgebra$9KW:K 610 $aAlgebraic Geometry$9KW:K 610 $aAutomorphisms$9KW:K 610 $aFields$9KW:K 610 $aHomomorphism$9KW:K 610 $aLie$9KW:K 610 $aLie Algebras$9KW:K 610 $aLinear algebra$9KW:K 610 $aMatrix$9KW:K 610 $aPolynomials$9KW:K 610 $aRepresentation Theory$9KW:K 610 $aTransformation$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aHumphreys$bJames E.$3VANV044661$047861 712 $aSpringer $3VANV108073$4650 790 1$aHumphreys, J. E.$zHumphreys, James E.$3VANV064462 801 $aIT$bSOL$c20251107$gRICA 856 4 $uhttps://doi.org/10.1007/978-1-4612-6398-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00267640 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 7298 $e08eMF7298 20231127 996 $aIntroduction to Lie algebras and representation theory$979538 997 $aUNICAMPANIA