LEADER 02470nam0 2200529 i 450 001 VAN0126741 005 20230626125551.676 017 70$2N$a9783319958910 100 $a20200214d2019 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aAutomorphic Forms and Even Unimodular Lattices$eKneser Neighbors of Niemeier Lattices$fGaëtan Chenevier, Jean Lannes$gtranslated by Reinie Erné 210 $aCham$cSpringer$d2019 215 $axxi, 417 p.$cill.$d24 cm 410 1$1001VAN0057218$12001 $aErgebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A series of modern surveys in mathematics$1210 $aBerlin [etc.]$cSpringer$v69 500 1$3VAN0236685$aFormes automorphes et réseaux unimodulaires pairs$92983470 606 $a11Rxx$xAlgebraic number theory: global fields [MSC 2020]$3VANC019690$2MF 606 $a11Exx$xForms and linear algebraic groups [MSC 2020]$3VANC019932$2MF 606 $a11Fxx$xDiscontinuous groups and automorphic forms [MSC 2020]$3VANC021451$2MF 606 $a11Hxx$xGeometry of numbers [MSC 2020]$3VANC021462$2MF 606 $a11Mxx$xZeta and L-functions: analitic theory [MSC 2020]$3VANC021784$2MF 610 $aArthur conjectures$9KW:K 610 $aAutomorphic forms$9KW:K 610 $aClassical Groups$9KW:K 610 $aGalois representations$9KW:K 610 $aKneser neighbors$9KW:K 610 $aL-functions$9KW:K 610 $aLanglands conjectures$9KW:K 610 $aNiemeier lattices$9KW:K 610 $aQuadratic forms$9KW:K 610 $aSiegel modular forms$9KW:K 610 $aTheta series$9KW:K 610 $aUnimodular lattices$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aChenevier$bGaëtan$3VANV098141$0780998 701 1$aLannes$bJean$3VANV098142$0780999 702 1$aErné$bReinie$3VANV080077$4730 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-95891-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0126741 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 1518 $e08eMF1518 20200214 996 $aFormes automorphes et réseaux unimodulaires pairs$92983470 997 $aUNICAMPANIA