LEADER 02218nam0 2200457 i 450 001 VAN0125358 005 20230706113632.730 017 70$2N$a9783319110868 100 $a20191106d2015 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆThe ‰Mathematical Theory of Time-Harmonic Maxwell's Equations$eExpansion-, Integral-, and Variational Methods$fAndreas Kirsch, Frank Hettlich 210 $aCham$cSpringer$d2015 215 $axiii, 337 p.$d24 cm 410 1$1001VAN0023717$12001 $aApplied mathematical sciences$1210 $aBerlin [etc]$cSpringer$v190 500 1$3VAN0235295$aˆThe ‰Mathematical Theory of Time-Harmonic Maxwell's Equation$92440625 606 $a78-XX$xOptics, electromagnetic theory [MSC 2020]$3VANC022356$2MF 606 $a33-XX$xSpecial functions [MSC 2020]$3VANC022590$2MF 606 $a35A15$xVariational methods applied to PDEs [MSC 2020]$3VANC022747$2MF 606 $a35J05$xLaplace operator, Helmholtz equation (reduced wave equation), Poisson equation [MSC 2020]$3VANC025548$2MF 606 $a35Q61$xMaxwell equations [MSC 2020]$3VANC032320$2MF 606 $a33C55$xSpherical harmonics [MSC 2020]$3VANC033679$2MF 610 $aElectromagnetic Theory$9KW:K 610 $aHelmholtz Equation$9KW:K 610 $aLipschitz domains$9KW:K 610 $aMaxwell's equations$9KW:K 610 $aPartial differential equations$9KW:K 610 $aSobolev spaces$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aKirsch$bAndreas$3VANV044024$028299 701 1$aHettlich$bFrank$3VANV096792$0768310 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-11086-8$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0125358 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0474 $e08eMF474 20191107 996 $aMathematical Theory of Time-Harmonic Maxwell's Equation$92440625 997 $aUNICAMPANIA