LEADER 02144nam0 2200493 i 450 001 VAN0124339 005 20230704115723.642 017 70$2N$a9783319713069 100 $a20191015d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆThe ‰Geometric Hopf Invariant and Surgery Theory$fMichael Crabb, Andrew Ranicki 210 $aCham$cSpringer$d2017 215 $axvi, 397 p.$cill.$d24 cm 410 1$1001VAN0030486$12001 $aSpringer monographs in mathematics$1210 $aBerlin [etc.]$cSpringer 500 1$3VAN0236037$aˆThe ‰Geometric Hopf Invariant and Surgery Theory$91563097 606 $a55Q25$xHopf invariants [MSC 2020]$3VANC035244$2MF 606 $a57R42$xImmersions in differential topology [MSC 2020]$3VANC035245$2MF 610 $aAlgebraic surgery$9KW:K 610 $aBordism theory$9KW:K 610 $aCoordinate-free approach to stable homotopy theory$9KW:K 610 $aDifference construction chain homotopy$9KW:K 610 $aDifference construction homotopy$9KW:K 610 $aDoube points of maps$9KW:K 610 $aDouble point theorem$9KW:K 610 $aGeometric Hopf invariant$9KW:K 610 $aInner product spaces$9KW:K 610 $aManifolds$9KW:K 610 $aStable homotopy theory$9KW:K 610 $aSurgery obstruction theory$9KW:K 610 $aZ_2 equivariant homotopy$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCrabb$bMichael$3VANV095777$0767648 701 1$aRanicki$bAndrew$3VANV020806$060418 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-71306-9$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0124339 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0936 $e08eMF936 20191015 996 $aGeometric Hopf Invariant and Surgery Theory$91563097 997 $aUNICAMPANIA