LEADER 01059nam0 22002771i 450 001 VAN0009700 005 20061013120000.0 010 $a88-13-22641-1 100 $a20021118d2000 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆIl ‰decreto ingiuntivo e la fase di opposizione$fAntonio Valitutti, Franco De Stefano 205 $a2. ed. interamente riveduta ed aggiornata 210 $aPadova$cCedam$d2000 215 $aVII, 436 p.$d24 cm. 620 $dPadova$3VANL000007 700 1$aValitutti$bAntonio$3VANV002618$0235611 701 1$aDe Stefano$bFranco$3VANV002619$0407117 712 $aCEDAM $3VANV111515$4650 801 $aIT$bSOL$c20230616$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN0009700 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XVI.Ei.15 $e00 17877 20021118 996 $aDecreto ingiuntivo e la fase di opposizione$9975022 997 $aUNICAMPANIA LEADER 02336nam2 2200469 i 450 001 VAN0123764 005 20230703094002.135 017 70$2N$a9789811042560 100 $a20191001d2017 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aˆ2: ‰Linear Algebra, Galois Theory, Representation theory, Group extensions and Schur Multiplier$fRamji Lal 210 $aSingapore$cSpringer$d2017 215 $axviii, 432 p.$cill.$d24 cm 410 1$1001VAN0108894$12001 $aInfosys Science Foundation Series$1210 $aCham [etc.]$cSpringer 461 1$1001VAN0123766$12001 $aAlgebra$fRamji Lal$1210 $aSingapore$cSpringer$d2017-2021$1215 $a4 volumi$cill.$d24 cm$v2 500 1$3VAN0235367$aAlgebra. 2, Linear Algebra, Galois Theory, Representation theory, Group extensions and Schur Multiplier$92493904 606 $a20-XX$xGroup theory and generalizations [MSC 2020]$3VANC019715$2MF 606 $a19-XX$x$K$-theory [MSC 2020]$3VANC019735$2MF 606 $a12-XX$xField theory and polynomials [MSC 2020]$3VANC019746$2MF 606 $a15-XX$xLinear and multilinear algebra; matrix theory [MSC 2020]$3VANC020607$2MF 606 $a00A05$xMathematics in general [MSC 2020]$3VANC021796$2MF 606 $a00-XX$xGeneral and overarching topics; collections [MSC 2020]$3VANC025238$2MF 610 $aAlgebra$9KW:K 610 $aFinite Groups$9KW:K 610 $aGalois theory$9KW:K 610 $aGroup extension$9KW:K 610 $aLinear Equations$9KW:K 610 $aMatrix theory$9KW:K 610 $aVector spaces$9KW:K 620 $aSG$dSingapore$3VANL000061 700 1$aLal$bRamji$3VANV095219$0767330 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-981-10-4256-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0123764 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0537 $e08eMF537 20191001 996 $aAlgebra. 2, Linear Algebra, Galois Theory, Representation theory, Group extensions and Schur Multiplier$92493904 997 $aUNICAMPANIA LEADER 01052nam2 22002653i 450 001 VAN0116691 005 20180619014525.152 010 $a978-88-02-08130-4 100 $a20180619d2009 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ7: La ‰cultura$euna vocazione umanistica$fa cura di Carlo Ossola 210 $aTorino$cUTET$d2009 215 $a679 p.$cill.$d31 cm. 461 1$1001VAN0116650$12001 $aˆLa ‰cultura italiana$fdiretta da Luigi Luca Cavalli Sforza$1210 $aTorino$cUTET$1215 $avolumi$d31 cm.$v7 620 $dTorino$3VANL000001 702 1$aOssola$bCarlo$3VANV032843$4340 712 $aUTET $3VANV107949$4650 801 $aIT$bSOL$c20240614$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$1IT-CE0103$2VAN07 912 $aVAN0116691 950 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$d07CONS Lex b 33 7 $e07UBL937 20180619 996 $aCultura$961603 997 $aUNICAMPANIA