LEADER 02546nam0 2200565 i 450 001 VAN0115153 005 20220314042516.298 017 70$2N$a978-3-319-33338-0 100 $a20180222d2016 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aOptimization of polynomials in non-commuting variables$fSabine Burgdorf, Igor Klep, Janez Povh 210 $a[Cham]$cSpringer$d2016 215 $aXV, 104 p.$cill.$d24 cm 410 1$1001VAN0102596$12001 $aSpringerBriefs in mathematics$1210 $aBerlin [etc.]$cSpringer 500 1$3VAN0243016$aOptimization of polynomials in non-commuting variables$91523545 606 $a14P10$xSemialgebraic sets and related spaces [MSC 2020]$3VANC021496$2MF 606 $a13J30$xReal algebra [MSC 2020]$3VANC023792$2MF 606 $a47A57$xLinear operator methods in interpolation, moment and extension problems [MSC 2020]$3VANC024725$2MF 606 $a90C26$xNonconvex programming, global optimization [MSC 2020]$3VANC026769$2MF 606 $a90C22$xSemidefinite programming [MSC 2020]$3VANC030683$2MF 606 $a08B20$xFree algebras [MSC 2020]$3VANC034027$2MF 610 $aExtracting optimizers$9KW:K 610 $aFree analysis$9KW:K 610 $aFree real algebraic geometry$9KW:K 610 $aMathematical Optimization$9KW:K 610 $aNewton chip method$9KW:K 610 $aNewton cyclic chip method$9KW:K 610 $aNon-commutative algebraic geometry$9KW:K 610 $aPolynomial data$9KW:K 610 $aQuantum Theory$9KW:K 610 $aQuantum information science$9KW:K 610 $aQuantum mechanics$9KW:K 610 $aSemidefinite programming$9KW:K 610 $aSum of hermitian squares$9KW:K 610 $aUnconstrained Optimization$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aBurgdorf$bSabine$3VANV089135$0756027 701 1$aKlep$bIgor$3VANV089136$0756028 701 1$aPovh$bJanez$3VANV089137$0756029 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-33338-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN0115153 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 2436 $e15EB 2436 20180222 996 $aOptimization of polynomials in non-commuting variables$91523545 997 $aUNICAMPANIA