LEADER 02254nam0 2200457 i 450 001 VAN0113926 005 20230705094912.473 017 70$2N$a9783658114084 100 $a20180123d2015 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aˆAn ‰algebraic geometric approach to separation of variables$fKonrad Schöbel 210 $aWiesbaden$cSpringer spektrum$d2015 215 $aXII, 138 p.$cill.$d24 cm 500 1$3VAN0234848$aˆAn ‰algebraic geometric approach to separation of variables$91522852 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a58D27$xModuli problems for differential geometric structures [MSC 2020]$3VANC020915$2MF 606 $a05E05$xSymmetric functions and generalizations [MSC 2020]$3VANC022086$2MF 606 $a53C21$xMethods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020]$3VANC022960$2MF 606 $a53A60$xDifferential geometry of webs [MSC 2020]$3VANC024047$2MF 606 $a58J70$xInvariance and symmetry properties for PDEs on manifolds [MSC 2020]$3VANC024164$2MF 606 $a14M12$xDeterminantal varieties [MSC 2020]$3VANC033554$2MF 606 $a35R01$xPDEs on manifolds [MSC 2020]$3VANC033561$2MF 610 $aAlgebraic curvature tensors$9KW:K 610 $aDeligne-Mumford moduli spaces$9KW:K 610 $aKilling tensors$9KW:K 610 $aOperads$9KW:K 610 $aStasheff polytopes$9KW:K 610 $aStäckel systems$9KW:K 620 $aDE$dWiesbaden$3VANL000457 700 1$aSchöbel$bKonrad$3VANV088016$0755698 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-658-11408-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0113926 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 0074 $e08eMF74 20180123 996 $aAlgebraic geometric approach to separation of variables$91522852 997 $aUNICAMPANIA