LEADER 02279nam0 2200481 i 450 001 VAN0110721 005 20230801123548.180 017 70$2N$a9783319636306 100 $a20170915d2017 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aRamanujan summation of divergent series$fBernard Candelpergher 210 $a[Cham]$cSpringer$d2017 215 $aXXIII, 193 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2185 500 1$3VAN0234302$aRamanujan summation of divergent series$91466442 606 $a11M06$x$\zeta (s)$ and $L(s, \chi)$ [MSC 2020]$3VANC019707$2MF 606 $a40G05$xCesàro, Euler, Nörlund and Hausdorff methods [MSC 2020]$3VANC023167$2MF 606 $a30B50$xDirichlet series, exponential series and other series in one complex variable [MSC 2020]$3VANC025275$2MF 606 $a11M35$xHurwitz and Lerch zeta functions [MSC 2020]$3VANC029226$2MF 606 $a30B40$xAnalytic continuation of one complex variable [MSC 2020]$3VANC032885$2MF 606 $a40D05$xGeneral theorems on summability [MSC 2020]$3VANC033178$2MF 606 $a40G10$xAbel, Borel and power series methods [MSC 2020]$3VANC033179$2MF 606 $a40Gxx$xSpecial methods of summability [MSC 2020]$3VANC033180$2MF 610 $aBorel Summation$9KW:K 610 $aDivergent$9KW:K 610 $aEuler Summation$9KW:K 610 $aEuler-MacLaurin formula$9KW:K 610 $aRamanujan$9KW:K 610 $aSeries$9KW:K 610 $aSummation$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCandelpergher$bBernard$3VANV085491$0739987 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-63630-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0110721 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2185 20170915 996 $aRamanujan summation of divergent series$91466442 997 $aUNICAMPANIA