LEADER 02197nam0 2200469 i 450 001 VAN0107573 005 20230801120405.39 017 70$2N$a9783319423517 100 $a20170206d2016 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aRicci flow and geometric applications$eCetraro, Italy 2010$fMichel Boileau ... [et al.]$gRiccardo Benedetti, Carlo Mantegazza editors 205 $a[Cham] : Springer, 2016 210 $aXI$d136 p. ; 24 cm 215 410 1$1001VAN0050834$12001 $aLecture notes in mathematics. Fondazione CIME. Firenze$1210 $aBerlin$cSpringer$1300 $aDal 2011: C.I.M.E. Foundation Subseries 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2166 500 1$3VAN0234109$aRicci flow and geometric applications : Cetraro, Italy 2010$91474432 606 $a53Exx$xGeometric evolution equations [MSC 2020]$3VANC021666$2MF 606 $a57M50$xGeneral geometric structures on low-dimensional manifolds [MSC 2020]$3VANC023815$2MF 606 $a57K30$xGeneral topology of 3-manifolds [MSC 2020]$3VANC025093$2MF 610 $aGeometrization$9KW:K 610 $aKähler-Ricci flow$9KW:K 610 $aManifolds$9KW:K 610 $aPartial differential equations$9KW:K 610 $aPoincare Conjecture$9KW:K 610 $aRicci flow$9KW:K 610 $aRicci tensor$9KW:K 620 $aCH$dCham$3VANL001889 702 1$aBenedetti$bRiccardo$3VANV041291$4340 702 1$aMantegazza$bCarlo$3VANV082990$4340 702 1$aBoileau$bMichel$3VANV082989 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-319-42351-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0107573 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2166 20170206 996 $aRicci flow and geometric applications$91474432 997 $aUNICAMPANIA