LEADER 15054nac# 2201105 i 450 001 VAN0102916 005 20240709085726.751 011 $a2191-544X 017 70$20$a21915458 100 $a20151014a2011 |0itac50 ba 102 $aDE 105 $a|||| ||||| 110 $ab|||||||||| 200 1 $aSpringerBriefs in statistics 210 $aBerlin [etc.]$cSpringer$d2011- 463 1$1001VAN0123391$12001 $aAlgorithms and programs of dynamic mixture estimation$eunified approach to different types of components$fIvan Nagy, Evgenia Suzdaleva$1210 $aCham$cSpringer$d2017$1215 $aXI, 113 p.$cill.$d24 cm 463 1$1001VAN0124060$12001 $aAnalysing Inequalities in Germany$eA Structured Additive Distributional Regression Approach$fAlexander Silbersdorff$1210 $aCham$cSpringer$d2017$1215 $ax, 98 p.$cill.$d24 cm 463 1$1001VAN0125118$12001 $aAnalysis of Survival Data with Dependent Censorining$eCopula-Based Approaches$fTakeshi Emura, Yi-Hau Chen$1210 $aSingapore$cSpringer$d2018$1215 $axiii, 84 p.$cill.$d24 cm 463 1$1001VAN0279150$12001 $aANOVA with Dependent Errors$fYuichi Goto ... [et al.]$1210 $aSingapore$cSpringer$d2023$1215 $axv, 91 p.$cill.$d24 cm 463 1$1001VAN0124575$12001 $aApplied Multidimensional Scaling and Unfolding$fIngwer Borg, Patrick J. F. Groenen, Patrick Mair$1205 $a2. ed$1210 $aCham$cSpringer$d2018$1215 $aix, 122 p.$cill.$d24 cm 463 1$1001VAN0123401$12001 $aAssessing model-based reasoning using evidence-centered design$ea suite of research-based design patterns$fRobert J. Mislevy ... [et al.]$1210 $aCham$cSpringer$d2017$1215 $axvii, 130 p.$cill.$d24 cm 463 1$1001VAN0125119$12001 $aAsymmetric Kernel Smoothing$eTheory and Applications in Economics and Finance$fMasayuki Hirukawa$1210 $aSingapore$cSpringer$d2018$1215 $axii, 110 p.$cill.$d24 cm 463 1$1001VAN0275424$12001 $aAsymptotic Statistics in Insurance Risk Theory$fYasutaka Shimizu$1210 $aSingapore$cSpringer$d2021$1215 $ax, 110 p.$cill.$d24 cm 463 1$1001VAN0274590$12001 $aBayesian Optimization with Application to Computer Experiments$fTony Pourmohamad, Herbert K. H. Lee$1210 $aCham$cSpringer$d2021$1215 $ax, 104 p.$cill.$d24 cm 463 1$1001VAN0114467$12001 $aBayesians versus frequentists$ea philosophical debate on statistical reasoning$fJordi Vallverdú$1210 $aHeidelberg [etc.]$cSpringer$d2016 - XII$d110 p.$cill. ; 24 cm 463 1$1001VAN0114063$12001 $aBrief guidelines for methods and statistics in medical research$fJamalludin Ab Rahman$1210 $aSingapore$cSpringer$d2015$1215 $aVIII, 108 p.$cill.$d24 cm 463 1$1001VAN0279395$12001 $aClosure Properties for Heavy-Tailed and Related Distributions$eAn Overview$fRemigijus Leipus, Jonas ?iaulys, Dimitrios Konstantinides$1210 $aCham$cSpringer$d2023$1215 $aix, 92 p.$cill.$d24 cm 463 1$1001VAN0114588$12001 $aConvolution copula econometrics$fUmberto Cherubini, Fabio Gobbi, Sabrina Mulinacci$1210 $a[Cham]$cSpringer$d2016$1215 $aX, 90 p.$cill.$d24 cm 463 1$1001VAN0115418$12001 $aˆThe ‰Cox model and its applications$fMikhail Nikulin, Hong-Dar Isaac Wu$1210 $aBerlin$aHeidelberg$cSpringer$d2016$1215 $aXIII, 124 p.$cill.$d24 cm 463 1$1001VAN0124630$12001 $aDecision Support Using Nonparametric Statistics$fWarren Beatty$1210 $aCham$cSpringer$d2018$1215 $axxii, 115 p.$cill.$d24 cm 463 1$1001VAN0275451$12001 $aDiagnostic Methods in Time Series$fFumiya Akashi ... [et al.]$1210 $aSingapore$cSpringer$d2021$1215 $ax, 108 p.$cill.$d24 cm 463 1$1001VAN0125131$12001 $aEmpirical Likelihood and Quantile Methods for Time Series$eEfficiency, Robustness, Optimality, and Prediction$fYan Liu, Fumiya Akashi, Masanobu Taniguchi$1210 $aSingapore$cSpringer$d2018$1215 $ax, 136 p.$cill.$d24 cm 463 1$1001VAN0274725$12001 $aEvent Attendance Prediction in Social Networks$fXiaomei Zhang, Guohong Cao$1210 $aCham$cSpringer$d2021$1215 $aviii, 54 p.$cill.$d24 cm 463 1$1001VAN0124684$12001 $aFinite Mixture of Skewed Distributions$fVíctor Hugo Lachos Dávila, Celso Rômulo Barbosa Cabral, Camila Borelli Zeller$1210 $aCham$cSpringer$d2018$1215 $ax, 101 p.$cill.$d24 cm 463 1$1001VAN0104150$12001 $aGeneralized hyperbolic secant distributions$ewith applications to finance$fMatthias J. Fischer$1210 $aHeidelberg$cSpringer$d2014$1215 $aVIII, 72 p.$cill.$d24 cm 463 1$1001VAN0104131$12001 $aGeneralized Weibull distributions$fChin-Diew Lai$1210 $aHeidelberg$cSpringer$d2014$1215 $aVIII, 118 p.$cill.$d24 cm 463 1$1001VAN0249342$12001 $aIdentifiability and Regression Analysis of Biological Systems Models$eStatistical and Mathematical Foundations and R Scripts$fPaola Lecca$1210 $aCham$cSpringer$d2020$1215 $ax, 82 p.$cill.$d24 cm 463 1$1001VAN0277598$12001 $aImportant Applications of the Behrens-Fisher Statistic and the False Discovery Rate$fTejas A. Desai$1210 $aCham$cSpringer$d2022$1215 $avi, 83 p.$cill.$d24 cm 463 1$1001VAN0274839$12001 $aInnovative Learning Environments in STEM Higher Education$eOpportunities, Challenges, and Looking Forward$fJungwoo Ryoo, Kurt Winkelmann deitors$1210 $aCham$cSpringer$d2021$1215 $axv, 137 p.$cill.$d24 cm 463 1$1001VAN0104174$12001 $aˆAn ‰introduction to Bartlett correction and bias reduction$fGauss M. Cordeiro, Francisco Cribari-Neto$1210 $aBerlin$cSpringer$d2014$1215 $aXI, 107 p.$d24 cm 463 1$1001VAN0103245$12001 $aIntroduction to data analysis and graphical presentation in biostatistics with R$estatistics in the large$fThomas W. MacFarland$1210 $aCham$cSpringer$d2014$1215 $aVII, 167 p.$cill.$d24 cm 463 1$1001VAN0277754$12001 $aLectures on Dependency$eSelected Topics in Multivariate Statistics$fThorsten Dickhaus$1210 $aCham$cSpringer$d2022$1215 $axiv, 56 p.$cill.$d24 cm 463 1$1001VAN0104138$12001 $aLévy processes and their applications in reliability and storage$fMohamed Abdel-Hameed$1210 $aHeidelberg$cSpringer$d2014$1215 $aXIV, 116 p.$cill.$d24 cm 463 1$1001VAN0125152$12001 $aLongitudinal Data Analysis$eAutoregressive Linear Mixed Effects Models$fIkuko Funatogawa, Takashi Funatogawa$1210 $aSingapore$cSpringer$d2018$1215 $ax, 141 p.$cill.$d24 cm 463 1$1001VAN0103311$12001 $aMachine learning in medicine$eCookbook$fTon J. Cleophas, Aeilko H. Zwinderman$1210 $aCham$cSpringer$d2014$1215 $aXI, 137 p.$cill.$d24 cm 463 1$1001VAN0103811$12001 $aMachine learning in medicine$eCookbook two$fTon J. Cleophas, Aeilko H. Zwinderman$1210 $aCham$cSpringer$d2014$1215 $aXI, 140 p.$cill.$d24 cm 463 1$1001VAN0104101$12001 $aMachine learning in medicine$eCookbook three$fTon J. Cleophas, Aeilko H. Zwinderman$1210 $aCham$cSpringer$d2014$1215 $aXIII, 131 p.$cill.$d24 cm 463 1$1001VAN0123937$12001 $aMachine Translation with Minimal Reliance on Parallel Resources$fGeorge Tambouratzis, Marina Vassiliou, Sokratis Sofianopoulos$1210 $aCham$cSpringer$d2017$1215 $aix, 88 p.$cill.$d24 cm 463 1$1001VAN0279260$12001 $aMixed-Effects Models and Small Area Estimation$fShonosuke Sugasawa, Tatsuya Kubokawa$1210 $aSingapore$cSpringer$d2023$1215 $aviii, 121 p.$cill.$d24 cm 463 1$1001VAN0124474$12001 $aModel Averaging$fDavid Fletcher$1210 $aBerlin$cSpringer$d2018$1215 $ax, 107 p.$cill.$d24 cm 463 1$1001VAN0114983$12001 $aModel choice in nonnested families$fBasilio de Bragança Pereira, Carlos Alberto de Bragança Pereira$1210 $a[Berlin]$cSpringer$d2016$1215 $aX, 96 p.$cill.$d24 cm 463 1$1001VAN0125086$12001 $aModern Dose-Finding Designs for Cancer Phase I Trials: Drug Combinations and Molecularly Targeted Agents$fAkihiro Hirakawa ... [et al.]$1210 $aTokyo$cSpringer$d2018$1215 $axiii, 89 p.$d24 cm 463 1$1001VAN0113258$12001 $aMovie analytics$ea Hollywood introduction to big data$f Dominique Haughton ... [et al.]$1210 $a[Cham]$cSpringer$d2015$1215 $aVIII, 64 p.$cill.$d24 cm 463 1$1001VAN0274999$12001 $aMultivariate Exponential Families$eA Concise Guide to Statistical Inference$fStefan Bedbur, Udo Kamps$1210 $aCham$cSpringer$d2021$1215 $ax, 142 p.$cill.$d24 cm 463 1$1001VAN0115164$12001 $aParametric and nonparametric inference for statistical dynamic shape analysis with applications$fChiara Brombin ... [et al.]$1210 $aCham$cSpringer$d2016$1215 $aX, 115 p.$cill.$d24 cm 463 1$1001VAN0124930$12001 $aParametric and Nonparametric Statistics for Sample Surveys and Customer Satisfaction Data$fRosa Arboretti ... [et al.]$1210 $aCham$cSpringer$d2018$1215 $ax, 84 p.$cill.$d24 cm 463 1$1001VAN0125087$12001 $aPartitions, Hypergeometric Systems, and Dirichlet Processes in Statistics$fShuhei Mano$1210 $aTokyo$cSpringer$d2018$1215 $aviii, 135 p.$cill.$d24 cm 463 1$1001VAN0103264$12001 $aPenalty, shrinkage and pretest strategies$evariable selection and estimation$fS. Ejaz Ahmed$1210 $aCham$cSpringer$d2014$1215 $aIX, 115 p.$cill.$d24 cm 463 1$1001VAN0103397$12001 $aPerson-centered methods$econfigural frequency analysis (CFA) and other methods for the analysis of contingency tables$fMark Stemmler$1210 $aCham$cSpringer$d2014$1215 $aVIII, 88 p.$cill.$d24 cm 463 1$1001VAN0249645$12001 $aPerson-centered methods$econfigural frequency analysis (CFA) and other methods for the analysis of contingency tables$fMark Stemmler$1205 $a2. ed$1210 $aCham$cSpringer$d2020$1215 $ax, 116 p.$cill.$d24 cm 463 1$1001VAN0275492$12001 $aPioneering Works on Extreme Value Theory$eIn Honor of Masaaki Sibuya$fNobuaki Hoshino, Shuhei Mano, Takaaki Shimura editors$1210 $aSingapore$cSpringer$d2021$1215 $aix, 134 p.$cill.$d24 cm 463 1$1001VAN0278008$12001 $aProbabilistic Risk Analysis and Bayesian Decision Theory$fMarcel van Oijen, Mark Brewer$1210 $aCham$cSpringer$d2022$1215 $axiii, 114 p.$cill.$d24 cm 463 1$1001VAN0113952$12001 $aRankings and preferences$enew results in weighted correlation and weighted principal component analysis with applications$fJoaquim Pinto da Costa$1210 $aBerlin$aHeidelberg$cSpringer$d2015$1215 $aX, 91 p.$cill.$d24 cm 463 1$1001VAN0103416$12001 $aRenewal processes$fKosto V. Mitov, Edward Omey$1210 $aCham$cSpringer$d2014$1215 $aVIII, 122 p.$cill.$d24 cm 463 1$1001VAN0113706$12001 $aSample size determination in clinical trials with multiple endpoints$fTakashi Sozu ... [et al.]$1210 $a[Cham]$cSpringer$d2015$1215 $aVI, 95 p.$cill.$d24 cm 463 1$1001VAN0274267$12001 $aSampling designs dependent on sample parameters of auxiliary variables$fJanusz L. Wywia?$1205 $a2. ed$1210 $aBerlin$aHeidelberg$cSpringer$d2021$1215 $ax, 107 p.$cill.$d24 cm 463 1$1001VAN0113947$12001 $aSampling designs dependent on sample parameters of auxiliary variables$fJanusz L. Wywia?$1210 $aBerlin$aHeidelberg$cSpringer$d2015$1215 $aX, 78 p.$cill.$d24 cm 463 1$1001VAN0279004$12001 $aSelected Payout Products of the Old-Age Pension Saving Scheme$fJana ?pirková ... [et al.]$1210 $aCham$cSpringer$d2023$1215 $axii, 70 p.$cill.$d24 cm 463 1$1001VAN0125089$12001 $aSeparating Information Maximum Likelihood Method for High-Frequency Financial Data$fNaoto Kunitomo, Seisho Sato, Daisuke Kurisu$1210 $aTokyo$cSpringer$d2018$1215 $aviii, 114 p.$cill.$d24 cm 463 1$1001VAN0104199$12001 $aˆThe ‰significance test controversy revisited$ethe fiducial bayesian alternative$fBruno Lecoutre, Jacques Poitevineau$1210 $aBerlin$cSpringer$d2014$1215 $aXI, 134 p.$cill.$d24 cm 463 1$1001VAN0248486$12001 $aSingular Spectrum Analysis for Time Series$fNina Golyandina, Anatoly Zhigljavsky$1205 $a2. ed$1210 $aBerlin$cSpringer$d2020$1215 $aix, 146 p.$cill.$d24 cm 463 1$1001VAN0104268$12001 $aSoftware reliability modeling$efundamentals and applications$fShigeru Yamada$1210 $aTokyo$cSpringer$d2014$1215 $aX, 90 p.$cill.$d24 cm 463 1$1001VAN0124685$12001 $aSpringerBriefs in statistics-ABE$fAssociação Brasileira de Estatística$1210 $aCham$cSpringer 463 1$1001VAN0113968$12001 $aSpringerBriefs in Statistics. JSS research series in statistics$1210 $aBerlin [etc.]$cSpringer$d2015- 463 1$1001VAN0249856$12001 $aStatistical Analysis of Operational Risk Data$fGiovanni De Luca, Danilo Carità, Francesco Martinelli$1210 $aCham$cSpringer$d2020$1215 $aix, 84 p.$cill.$d24 cm 463 1$1001VAN0102915$12001 $aStatistical approaches to orofacial pain and temporomandibular disorders research$fDaniele Manfredini ... [et al.]$1210 $aNew York$cSpringer$d2014. ? v$d84 p.$cill. ; 24 cm 463 1$1001VAN0278251$12001 $aStatistical Causal Discovery: LiNGAM Approach$fShohei Shimizu$1210 $aTokyo$cSpringer$d2022$1215 $aix, 94 p.$cill.$d24 cm 463 1$1001VAN0123756$12001 $aStatistical Estimation for Truncated Exponential Families$fMasafumi Akahira$1210 $aSingapore$cSpringer$d2017$1215 $axi, 122 p.$cill.$d24 cm 463 1$1001VAN0279283$12001 $aStatistical Inference Based on Kernel Distribution Function Estimators$fRizky Reza Fauzi, Yoshihiko Maesono$1210 $aSingapore$cSpringer$d2023$1215 $aviii, 96 p.$cill.$d24 cm 463 1$1001VAN0103269$12001 $aStatistical inference for financial engineering$fMasanobu Taniguchi ... [et al.]$1210 $aCham$cSpringer$d2014$1215 $aX, 118 p.$cill.$d24 cm 463 1$1001VAN0275301$12001 $aStatistics, New Empiricism and Society in the Era of Big Data$fGiuseppe Arbia$1210 $aCham$cSpringer$d2021$1215 $axi, 54 p.$cill.$d24 cm 463 1$1001VAN0279288$12001 $aStein Estimation$fYuzo Maruyama, Tatsuya Kubokawa, William E. Strawderman$1210 $aSingapore$cSpringer$d2023$1215 $aviii, 130 p.$cill.$d24 cm 463 1$1001VAN0279292$12001 $aStochastic Volatility and Realized Stochastic Volatility Models$fMakoto Takahashi, Yasuhiro Omori, Toshiaki Watanabe$1210 $aSingapore$cSpringer$d2023$1215 $aviii, 113 p.$cill.$d24 cm 463 1$1001VAN0250515$12001 $aTime Series Analysis Using SAS Enterprise Guide$fTimina Liu, Shuangzhe Liu, Lei Shi$1210 $aSingapore$cSpringer$d2020$1215 $aviii, 131 p.$cill.$d24 cm 463 1$1001VAN0275378$12001 $aTriple Double$eUsing Statistics to Settle NBA Debates$fArilova A. Randrianasolo$1210 $aCham$cSpringer$d2021$1215 $axiii, 72 p.$cill.$d24 cm 463 1$1001VAN0278238$12001 $aUncertainty in Engineering$eIntroduction to Methods and Applications$fLouis J. M. Aslett, Frank P. A. Coolen, Jasper De Bock editors$1210 $aCham$cSpringer$d2022$1215 $avii, 147 p.$cill.$d24 cm 463 1$1001VAN0115486$12001 $aWorking with the american community survey in R$ea guide to using the acs package$fEzra Haber Glenn$1210 $a[Cham]$cSpringer$d2016$1215 $aVIII, 53 p.$d24 cm 517 1$3VAN0240848$aBRIEFSSTATIST 620 $dBerlin$3VANL000066 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240712$gRICA 856 4 $uhttps://www.springer.com/series/8921$zhttps://www.springer.com/series/8921 912 $aVAN0102916 996 $aSpringerBriefs in statistics$91777433 997 $aUNICAMPANIA