LEADER 02277nam0 2200433 i 450 001 VAN0101562 005 20220126024733.987 017 70$2N$a9783319022314 100 $a20150429d2014 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aStrong and weak approximation of semilinear stochastic evolution equations$fRaphael Kruse 210 $aCham$cSpringer$d2014 215 $aXIV, 177 p.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2093 500 1$3VAN0234057$aStrong and weak approximation of semilinear stochastic evolution equations$9821251 606 $a60H07$xStochastic calculus of variations and the Malliavin calculus [MSC 2020]$3VANC020014$2MF 606 $a60H15$xStochastic partial differential equations (aspects of stochastic analysis) [MSC 2020]$3VANC021488$2MF 606 $a35B65$xSmoothness and regularity of solutions to PDEs [MSC 2020]$3VANC022822$2MF 606 $a65C30$xNumerical solutions to stochastic differential and integral equations [MSC 2020]$3VANC023284$2MF 606 $a65M60$xFinite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs [MSC 2020]$3VANC029157$2MF 610 $aGalerkin finite element methods$9KW:K 610 $aMalliavin Calculus$9KW:K 610 $aPartial differential equations$9KW:K 610 $aSPDEs$9KW:K 610 $aSpatio-temporal regularity$9KW:K 610 $aStrong and weak convergence$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aKruse$bRaphael$3VANV079388$0524888 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-319-02231-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0101562 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2093 20150429 996 $aStrong and weak approximation of semilinear stochastic evolution equations$9821251 997 $aUNICAMPANIA