LEADER 01850nam0 22003013i 450 001 VAN0088562 005 20230721011252.79 100 $a20120412d1863 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆLa ‰filosofia del diritto, ossia il diritto di natura e la scienza della politica$fdi Giorgio G. F. Hegel$gcon illustrazioni di Eduardo Gans$gtraduzione dall originale per A. Novelli 210 $aNapoli$cF. Rossi Romano$d1863 215 $a352 p.$d19 cm 410 1$1001VAN0088561$12001 $aOpere di Hegel$1210 $aNapoli$cpresso F. Rossi-Romano. 620 $dNapoli$3VANL000005 700 1$aHegel$bGiorgio Guglielmo Federico$3VANV072574$0722971 701 1$aGans$bEduardo$3VANV072577$0389164 702 1$aNovelli$bAlessandro$3VANV072578 712 $aRossi-Romano$3VANV113803$4650 790 1$aHegel, Georg Wilhelm Friedrich$zHegel, Giorgio Guglielmo Federico$3VANV072576 801 $aIT$bSOL$c20230728$gRICA 856 4 $uhttp://books.google.it/books?id=6O5v3KBt9YMC&pg=PP9&dq=La+*filosofia+del+diritto,+ossia+il+diritto+di+natura+e+la+scienza+della+politica+/+di+Giorgio+G.+F.+Hegel&hl=it&sa=X&ei=DIKGT_C_OaqF4gSY6LQi&ved=0CDQQ6AEwAA#v=onepage&q&f=false$zhttp://books.google.it/books?id=6O5v3KBt9YMC&pg=PP9&dq=La+*filosofia+del+diritto,+ossia+il+diritto+di+natura+e+la+scienza+della+politica+/+di+Giorgio+G.+F.+Hegel&hl=it&sa=X&ei=DIKGT_C_OaqF4gSY6LQi&ved=0CDQQ6AEwAA#v=onepage&q&f=false 899 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$1IT-CE0105$2VAN00 912 $aVAN0088562 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS BL.800M.187 $e00BL 3728 20120412 Biblioteca Lauria 996 $aFilosofia del diritto, ossia il diritto di natura e la scienza della politica$91419034 997 $aUNICAMPANIA LEADER 01903nam0 22004333i 450 001 VAN0274485 005 20240508032159.676 017 70$2N$a9783030772635 100 $a20240405d2021 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aˆThe ‰Eigenbook$eEigenvarieties, families of Galois representations, p-adic L-functions$fJoël Bellaïche 210 $aCham$cBirkhäuser$cSpringer$d2021 215 $axi, 316 p.$cill.$d24 cm 410 1$1001VAN0115434$12001 $aPathways in mathematics$1210 $aBasel [etc.]$cBirkhäuser 606 $a11-XX$xNumber theory [MSC 2020]$3VANC019688$2MF 606 $a11Mxx$xZeta and L-functions: analitic theory [MSC 2020]$3VANC021784$2MF 606 $a11F33$xCongruences for modular and $p$-adic modular forms [MSC 2020]$3VANC021798$2MF 606 $a11F85$x$p$-adic theory, local fields [MSC 2020]$3VANC021963$2MF 606 $a11F80$xGalois representations [MSC 2020]$3VANC029353$2MF 610 $aEigencurve$9KW:K 610 $aEigenvarieties$9KW:K 610 $aL-functions$9KW:K 610 $aModular Symbols$9KW:K 610 $aModular forms$9KW:K 610 $ap-adic$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aBellaïche$bJoël$3VANV226917$0851662 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-030-77263-5$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0274485 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book 8102 $e08eMF8102 20240412 996 $aEigenbook$94148945 997 $aUNICAMPANIA