LEADER 01719nam0 2200385 i 450 001 VAN0086783 005 20211111092929.9 017 70$2N$a9783642244094 100 $a20120124d2012 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aApproximate deconvolution models of turbulence$eAnalysis, Phenomenology and Numerical Analysis$fWilliam J. Layton, Leo G. Rebholz 210 $aBerlin$cSpringer$d2012 215 $aVIII, 184 p.$cill.$d24 cm 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2042 500 1$3VAN0234267$aApproximate deconvolution models of turbulence$9854245 606 $a65-XX$xNumerical analysis [MSC 2020]$3VANC019772$2MF 606 $a76-XX$xFluid mechanics [MSC 2020]$3VANC019858$2MF 610 $aAlpha model$9KW:K 610 $aApproximate deconvolution$9KW:K 610 $aLarge eddy simulation$9KW:K 610 $aTurbulence$9KW:K 620 $dBerlin$3VANL000066 700 1$aLayton$bWilliam J.$3VANV070979$0477399 701 1$aRebholz$bLeo G.$3VANV070980$0515857 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-642-24409-4$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN0086783 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2042 20120124 996 $aApproximate deconvolution models of turbulence$9854245 997 $aUNICAMPANIA