LEADER 01737nam0 2200373 i 450 001 VAN0054353 005 20231219050846.848 010 $a35-404-1607-2 010 $a978-36-420-7484-4 100 $a20061011d2001 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aFundamentals of computational fluid dynamics$fH. Lomax, T. H. Pulliam, D. W. Zingg 210 $aBerlin$cSpringer$d2001 215 $aXIV, 249 p.$cill.$d25 cm 410 1$1001VAN0034242$12001 $aScientific computation$1210 $aBerlin$cSpringer 606 $a76-XX$xFluid mechanics [MSC 2020]$3VANC019858$2MF 606 $a76M12$xFinite volume methods applied to problems in fluid mechanics [MSC 2020]$3VANC023510$2MF 606 $a76M20$xFinite difference methods applied to problems in fluid mechanics [MSC 2020]$3VANC029158$2MF 620 $dBerlin$3VANL000066 700 1$aLomax$bHarvard$3VANV042970$0451411 701 1$aPulliam$bThomas H.$3VANV042971$0726097 701 1$aZingg$bDavid W.$3VANV042972$0726096 712 $aSpringer $3VANV108073$4650 790 1$aZingg, D.W.$zZingg, David W.$3VANV064790 790 1$aZingg, D. W.$zZingg, David W.$3VANV064791 801 $aIT$bSOL$c20240614$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Lomax, Pulliam, Zingg - Fundamentals of Computational Fluid Dynamics.pdf$zContents 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN0054353 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 76-XX 2503 $e08 5950 I 20061011 996 $aFundamentals of computational fluid dynamics$91425107 997 $aUNICAMPANIA LEADER 02358nam# 22005533i 450 001 VAN00268510 005 20240806101525.583 017 70$2N$a9781461381563 100 $a20231206d1982 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 0 $a2$fR. E. Edwards 205 $a2. ed 210 $aNew York$cSpringer$d1982 215 $axi, 369 p.$d24 cm 410 1$1001VAN00023579$12001 $aGraduate texts in mathematics$1210 $aNew York [etc.]$cSpringer$d1950-$v85 461 1$1001VAN00268266$12001 $aFourier series$ea modern introduction$fR. E. Edwards$1210 $aNew York$cSpringer$1215 $avolumi$d24 cm$v2 606 $a40C05$xMatrix methods for summability [MSC 2020]$3VANC022549$2MF 606 $a42-XX$xHarmonic analysis on Euclidean spaces [MSC 2020]$3VANC019851$2MF 606 $a42A20$xConvergence and absolute convergence of Fourier and trigonometric series [MSC 2020]$3VANC022546$2MF 606 $a42A24$xSummability and absolute summability of Fourier and trigonometric series [MSC 2020]$3VANC024675$2MF 606 $a42A38$xFourier and Fourier-Stieltjes transforms and other transforms of Fourier type [MSC 2020]$3VANC024732$2MF 610 $aAlgebra$9KW:K 610 $aApproximation$9KW:K 610 $aCalculus$9KW:K 610 $aConvolution$9KW:K 610 $aFinite$9KW:K 610 $aFourier$9KW:K 610 $aFunctions$9KW:K 610 $aGraphs$9KW:K 610 $aIdentity$9KW:K 610 $aInvariants$9KW:K 610 $aLemma$9KW:K 610 $aMorphism$9KW:K 610 $aProofs$9KW:K 610 $aSeries$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aEdwards$bRobert E.$3VANV044270$0334907 712 $aSpringer $3VANV108073$4650 790 1$aEdwards, Robert Edmund$zEdwards, Robert E.$3VANV055955 801 $aIT$bSOL$c20250704$gRICA 856 4 $uhttps://doi.org/10.1007/978-1-4613-8156-3$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00268510 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 7565 $e08eMF7565 20231211 996 $a2$93644274 997 $aUNICAMPANIA