LEADER 02080nam0 2200445 i 450 001 VAN0050582 005 20240318030052.133 010 $a978-35-406-3537-6 100 $a20061030d1997 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aSobolev gradients and differential equations$fJ. W. Neuberger 210 $aBerlin$cSpringer$d1997 215 $aVIII, 149 p.$d24 cm 300 $aPubblicazione disponibile anche in formato elettronico 461 1$1001VAN0102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1670 500 1$3VAN0234380$aSobolev gradients and differential equations$978127 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a65Nxx$xNumerical methods for partial differential equations, boundary value problems [MSC 2020]$3VANC020832$2MF 606 $a65J15$xNumerical solutions to equations with nonlinear operators [MSC 2020]$3VANC022224$2MF 606 $a35A15$xVariational methods applied to PDEs [MSC 2020]$3VANC022747$2MF 606 $a35A35$xTheoretical approximation in context of PDEs [MSC 2020]$3VANC022776$2MF 610 $aDifferential equations$9KW:K 610 $aNewton's method$9KW:K 610 $aNumerical Analysis$9KW:K 610 $aOrthogonal projections$9KW:K 610 $aPartial differential equations$9KW:K 610 $aSobolev gradient$9KW:K 610 $aSobolev spaces$9KW:K 620 $dBerlin$3VANL000066 700 1$aNeuberger$bJohn W.$3VANV043469$0441033 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20240614$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0092831$zhttps://doi.org/10.1007/BFb0092831 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN0050582 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 35-XX 3012 $e08 5332 I 20061030 996 $aSobolev gradients and differential equations$978127 997 $aUNICAMPANIA