LEADER 01367nas 2200361 n 450 001 9910339036303321 005 20230321202153.0 035 $a(CKB)954928469058 035 $a(CONSER)ca 21000422 035 $a(EXLCZ)99954928469058 100 $a20750726b19171999 uy a 101 0 $aeng 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAmerican dyestuff reporter 210 $a[Secaucus, NJ, etc.]$c[SAF International, etc.] 215 $a1 online resource 311 08$aPrint version: American dyestuff reporter. 0002-8266 (DLC)ca 21000422 (OCoLC)1479786 330 $aFrom Aug. 1920-<41> includes a monthly technical section "devoted to the use and application of dyestuffs and the mechanical equipment incidental thereto." 330 $aIncludes proceedings of American Association of Textile Chemists and Colorists. 531 $aAMERICAN DYESTUFF REPORTER DEVOTED TO TEXTILE WET PROCESSING DYEING FINISHIN 531 $aAM DYEST REP 531 0 $aAm. dyest. report. 606 $aDyes and dyeing$vPeriodicals 615 0$aDyes and dyeing 676 $a667/.2/05 712 02$aAmerican Association of Textile Chemists and Colorists. 906 $aJOURNAL 912 $a9910339036303321 920 $aexl_impl conversion 996 $aAmerican dyestuff reporter$92565691 997 $aUNINA LEADER 02093nam0 22004813i 450 001 VAN00297525 005 20250826111030.454 017 70$2N$a9783540695943 100 $a20250826d1997 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aSobolev gradients and differential equations$fJ. W. Neuberger 210 $aBerlin$cSpringer$d1997 215 $aVIII, 149 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1670 500 1$3VAN00234380$aSobolev gradients and differential equations$978127 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a35A15$xVariational methods applied to PDEs [MSC 2020]$3VANC022747$2MF 606 $a35A35$xTheoretical approximation in context of PDEs [MSC 2020]$3VANC022776$2MF 606 $a65J15$xNumerical solutions to equations with nonlinear operators [MSC 2020]$3VANC022224$2MF 606 $a65Nxx$xNumerical methods for partial differential equations, boundary value problems [MSC 2020]$3VANC020832$2MF 610 $aDifferential equations$9KW:K 610 $aNewton's method$9KW:K 610 $aNumerical Analysis$9KW:K 610 $aOrthogonal projections$9KW:K 610 $aPartial Differential Equations$9KW:K 610 $aSobolev gradient$9KW:K 610 $aSobolev spaces$9KW:K 620 $dBerlin$3VANL000066 700 1$aNeuberger$bJohn W.$3VANV043469$0441033 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20251003$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0092831$zhttps://doi.org/10.1007/BFb0092831 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00297525 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 12400 $e08eMF12400 20250929 996 $aSobolev gradients and differential equations$978127 997 $aUNICAMPANIA