LEADER 01178nam0 22002773i 450 001 VAN0068581 005 20090402120000.0 010 $a978-88-348-8739-4 100 $a20090402d2008 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆLa ‰compravendita$ecorso di diritto civile$fAngelo Luminoso 205 $a5. ed.$b2. rist. agg 210 $aTorino$cGiappichelli$d©2008 215 $axiv, 484 p.$d24 cm. 620 $dTorino$3VANL000001 700 1$aLuminoso$bAngelo$3VANV000536$0145126 712 $aGiappichelli $3VANV107921$4650 801 $aIT$bSOL$c20230707$gRICA 912 $aVAN0068581 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XV.Eca.200 $e00BFG1599 20090402 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XV.Eca.200 bis $e00 798445783 20090629 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS XV.Eca.200 ter $e00 798445784 20090629 996 $aCompravendita$962834 997 $aUNICAMPANIA LEADER 01900nam0 22004333i 450 001 VAN00296447 005 20250925114922.22 017 70$2N$a9789401587617 100 $a20250710d1996 |0itac50 ba 101 $aeng 102 $aNL 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aSingular Semi-Riemannian Geometry$fby Demir N. Kupeli 210 $aDordrecht$cSpringer$cKluwer$d1996 215 $ax, 177 p.$d24 cm 410 1$1001VAN00022423$12001 $aMathematics and its applications$1210 $aDordrecht$cReidel$d1977-2007$1300 $aL'editore varia in: Kluwer ; [poi] Springer$v366 606 $a53-XX$xDifferential geometry [MSC 2020]$3VANC019813$2MF 606 $a53B30$xLocal differential geometry of Lorentz metrics, indefinite metrics [MSC 2020]$3VANC023565$2MF 606 $a53C50$xGlobal differential geometry of Lorentz manifolds, manifolds with indefinite metrics [MSC 2020]$3VANC023563$2MF 610 $aCovariant derivatives$9KW:K 610 $aDifferential geometry$9KW:K 610 $aManifolds$9KW:K 610 $aRiemannian geometry$9KW:K 610 $aTensors$9KW:K 620 $aNL$dDordrecht$3VANL000068 700 1$aKupeli$bDemir N.$3VANV043871$066737 712 $aKluwer $3VANV108116$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250926$gRICA 856 4 $uhttps://doi.org/10.1007/978-94-015-8761-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00296447 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 12151 $e08eMF12151 20250924 996 $aSingular semi-Riemannian geometry$9923569 997 $aUNICAMPANIA