LEADER 02410nam0 22005173i 450 001 VAN00296062 005 20250925015719.845 017 70$2N$a9783540496403 100 $a20250704d1996 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aRealization Spaces of Polytopes$fJürgen Richter-Gebert 210 $aBerlin$aHeidelberg$cSpringer$d1996 215 $axi, 187 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1643 606 $a14P10$xSemialgebraic sets and related spaces [MSC 2020]$3VANC021496$2MF 606 $a51A25$xAlgebraization in linear incidence geometry [MSC 2020]$3VANC022190$2MF 606 $a52-XX$xConvex and discrete geometry [MSC 2020]$3VANC019811$2MF 606 $a52B10$xThree-dimensional polytopes [MSC 2020]$3VANC023808$2MF 606 $a52B11$x$n$-dimensional polytopes [MSC 2020]$3VANC031077$2MF 606 $a52B40$xMatroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.) [MSC 2020]$3VANC023613$2MF 606 $a52C35$xArrangements of points, flats, hyperplanes (aspects of discrete geometry) [MSC 2020]$3VANC028900$2MF 606 $a68Q15$xComplexity classes (hierarchies, relations among complexity classes, etc.) [MSC 2020]$3VANC028792$2MF 610 $aCombinatorics$9KW:K 610 $aDimensions$9KW:K 610 $aNP-completeness$9KW:K 610 $aOriented Matroids$9KW:K 610 $aPolytopes$9KW:K 610 $aSemialgebraic sets$9KW:K 610 $aSteinitz's theorem$9KW:K 620 $dBerlin$3VANL000066 620 $aDE$dHeidelberg$3VANL000282 700 1$aRichter-Gebert$bJurgen$3VANV039815$0441057 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250926$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0093761$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00296062 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 12099 $e08eMF12099 20250731 996 $aRealization spaces of polytopes$978837 997 $aUNICAMPANIA