LEADER 01420nam0 22003373i 450 001 VAN00255040 005 20240806101442.796 017 70$2N$a9783540362494 100 $a20230222d1970 |0itac50 ba 101 $afre 102 $aDE 105 $a|||| ||||| 200 1 $aFaisceaux amples sur les schémas en groupes et les espaces homogènes$fMichel Raynaud 210 $aBerlin$cSpringer$d1970 215 $a219 p.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v119 606 $a14-XX$xAlgebraic geometry [MSC 2020]$3VANC019702$2MF 610 $aGroups$9KW:K 610 $aHomogeneous spaces$9KW:K 610 $aSpaces$9KW:K 620 $dBerlin$3VANL000066 700 1$aRaynaud$bMichel$3VANV207913$0334256 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/BFb0059504$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00255040 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 5464 $e08eMF5464 20230301 996 $aFaisceaux amples sur les schémas en groupes et les espaces homogènes$981239 997 $aUNICAMPANIA LEADER 02857nam0 22006613i 450 001 VAN00294163 005 20250902075950.233 017 70$2N$a9783662031186 100 $a20250604d1995 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aRiemannian Geometry and Geometric Analysis$fJurgen Jost 210 $aBerlin$cSpringer$d1995 215 $axi, 401 p.$d24 cm 410 1$1001VAN00024506$12001 $aUniversitext$1210 $aBerlin [etc]$cSpringer$d1930- 500 1$3VAN00235931$aRiemannian Geometry and Geometric Analysis$982994 606 $a53-XX$xDifferential geometry [MSC 2020]$3VANC019813$2MF 606 $a53B21$xMethods of local Riemannian geometry [MSC 2020]$3VANC029580$2MF 606 $a53C20$xGlobal Riemannian geometry, including pinching [MSC 2020]$3VANC023825$2MF 606 $a53C21$xMethods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020]$3VANC022960$2MF 606 $a53C22$xGeodesics in global differential geometry [MSC 2020]$3VANC024120$2MF 606 $a53C55$xGlobal differential geometry of Hermitian and Kahlerian manifolds [MSC 2020]$3VANC020916$2MF 606 $a58-XX$xGlobal analysis, analysis on manifolds [MSC 2020]$3VANC019758$2MF 606 $a58E20$xHarmonic maps, etc. [MSC 2020]$3VANC019783$2MF 610 $aCurvature$9KW:K 610 $aDirac operators$9KW:K 610 $aFloer homology$9KW:K 610 $aGeodesics$9KW:K 610 $aGeometry of submanifolds$9KW:K 610 $aHarmonic Functions$9KW:K 610 $aHarmonic maps$9KW:K 610 $aJacobi fields$9KW:K 610 $aKähler manifolds$9KW:K 610 $aLaplace operator$9KW:K 610 $aLie groups$9KW:K 610 $aMorse theory$9KW:K 610 $aQuantum Field Theory$9KW:K 610 $aRiemannian manifolds$9KW:K 610 $aSymmetric spaces$9KW:K 610 $aSymplectic geometry$9KW:K 610 $aTheoretical physics variational principles$9KW:K 610 $aVector bundles$9KW:K 620 $dBerlin$3VANL000066 700 1$aJost$bJürgen$3VANV044460$054734 712 $aSpringer $3VANV108073$4650 790 1$aJost, Jurgen$zJost, Jürgen$3VANV065202 801 $aIT$bSOL$c20250919$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-662-03118-6$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00294163 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 11827 $e08eMF11827 20250714 996 $aRiemannian geometry and geometric analysis$982994 997 $aUNICAMPANIA