LEADER 00713nac# 22002053i 450 001 VAN0269511 005 20240209021957.586 100 $a20240111f |0itac50 ba 102 $aIT 105 $a|||| ||||| 110 $ab|||||||||| 200 1 $aDialetto 210 $aCampobasso$cEdizioni Enne. 463 1$1001VAN0269510$12001 $aˆIl ‰lessico Santacrocese (Dialetto molisano)$fMichele Castelli$gintroduzione di Giovanni Mascia$gpostfazione di Nicola Iacobacci$1210 $aCampobasso$cEdizioni Enne$d1996$1215 $a356 p.$d22 cm$v5 620 $dCampobasso$3VANL000706 712 02$aEnne$3VANV111232 801 $aIT$bSOL$c20240216$gRICA 912 $aVAN0269511 996 $aDialetto$9839884 997 $aUNICAMPANIA LEADER 01942nam0 22004813i 450 001 VAN00290902 005 20260129021323.160 017 70$2N$a9783662029152 100 $a20250407d1993 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aValue Distribution Theory$fYang Lo 210 $aBerlin$aHeidelberg$cSpringer-Verlag$d1993 215 $axii, 269 p.$cill.$d24 cm 300 $aEdizione riveduta dell'opera originale in lingua cinese edita da Science, 1982 500 1$3VAN00290903$aJiàzhí f?nbù l?lùn jí qí x?n yánji?$94350480 606 $a30D30$xMeromorphic functions of one complex variable (general theory) [MSC 2020]$3VANC037365$2MF 606 $a30D35$xValue distribution of meromorphic functions of one complex variable, Nevanlinna theory [MSC 2020]$3VANC025032$2MF 610 $aDerivatives$9KW:K 610 $aDevelopment$9KW:K 610 $aDistributions$9KW:K 610 $aFields$9KW:K 610 $aForms$9KW:K 610 $aKnowledge$9KW:K 610 $aMeromorphic functions$9KW:K 610 $aNevanlinna theory$9KW:K 610 $aTime$9KW:K 610 $aValue-distribution$9KW:K 620 $dBerlin$3VANL000066 700 1$aYang$bLo$3VANV246132$01803441 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20260130$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-662-02915-2$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00290902 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 11360 $e08eMF11360 20250611 996 $aJiàzhí f?nbù l?lùn jí qí x?n yánji?$94350480 997 $aUNICAMPANIA