LEADER 02290nam0 22004813i 450 001 VAN00290364 005 20250618023309.463 017 70$2N$a9781461203858 100 $a20250331d1993 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aInfinite Dimensional Morse Theory and Multiple Solution Problems$fKung-ching Chang 210 $aNew York$cSpringer ; Boston$cBirkhäuser$d1993 215 $ax, 312 p.$d24 cm 410 1$1001VAN00044171$12001 $aProgress in nonlinear differential equations and their applications$1210 $aBoston [etc.]$cBirkhäuser$v6 606 $a35J20$xVariational methods for second-order elliptic equations [MSC 2020]$3VANC029094$2MF 606 $a37Jxx$xDynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems [MSC 2020]$3VANC021391$2MF 606 $a58-XX$xGlobal analysis, analysis on manifolds [MSC 2020]$3VANC019758$2MF 606 $a58E05$xAbstract critical point theory (Morse theory, Lyusternik-Shnirel'man theory, etc.) in infinite-dimensional spaces [MSC 2020]$3VANC023131$2MF 606 $a58Exx$xVariational problems in infinite-dimensional spaces [MSC 2020]$3VANC022687$2MF 610 $aAlgebraic Topology$9KW:K 610 $aBoundary Value Problems$9KW:K 610 $aCohomology$9KW:K 610 $aHodge theory$9KW:K 610 $aHomology$9KW:K 610 $aLinear optimization$9KW:K 620 $aUS$dNew York$3VANL000011 620 $dBoston$3VANL000051 700 1$aChang$bKung-Ching$3VANV047786$055494 712 $aBirkhäuser $3VANV108193$4650 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250620$gRICA 856 4 $uhttps://doi.org/10.1007/978-1-4612-0385-8$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00290364 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 11284 $e08eMF11284 20250528 996 $aInfinite dimensional morse theory and multiple solution problems$982386 997 $aUNICAMPANIA