LEADER 01912nam0 2200397 i 450 001 VAN00104353 005 20240806100725.849 017 70$2N$a978-88-7642-523-3 100 $a20151221d2014 |0itac50 ba 101 $aeng 102 $aIT 105 $a|||| ||||| 200 1 $aGeometric measure theory and real analysis$fedited by Luigi Ambrosio 210 $aPisa$cEdizioni della Normale$d2014 215 $aVII, 228 p.$d24 cm 410 1$1001VAN00104354$12001 $aCRM series$1210 $aPisa$cScuola Normale Superiore$v17 500 1$3VAN00241474$aGeometric measure theory and real analysis$91410005 606 $a46E35$xSobolev spaces and other spaces of ?smooth? functions, embedding theorems, trace theorems [MSC 2020]$3VANC020009$2MF 606 $a46G12$xMeasures and integration on abstract linear spaces [MSC 2020]$3VANC022365$2MF 606 $a49-XX$xCalculus of variations and optimal control; optimization [MSC 2020]$3VANC019757$2MF 606 $a49Q20$xVariational problems in a geometric measure-theoretic setting [MSC 2020]$3VANC020795$2MF 606 $a53C17$xSub-Riemannian geometry [MSC 2020]$3VANC026654$2MF 610 $aHeisenberg group$9KW:K 610 $aRegularity problem$9KW:K 610 $aSobolev classes$9KW:K 620 $dPisa$3VANL000008 702 1$aAmbrosio$bLuigi$3VANV035897 712 $aEdizioni della Normale$3VANV109036$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-88-7642-523-3$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$2VAN15 912 $fN 912 $aVAN00104353 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 4335 $e15EB 4335 20191106 996 $aGeometric measure theory and real analysis$91410005 997 $aUNICAMPANIA LEADER 02117nam0 22004693i 450 001 VAN00286238 005 20250205120713.994 017 70$2N$a9783031740350 100 $a20250204d2024 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 181 $ai$b e 182 $ab 200 1 $aBayesian Nonparametric Statistics$eÉcole d?Été de Probabilités de Saint-Flour LI - 2023$fIsmaël Castillo 210 $aCham$cSpringer$d2024 215 $axii, 216 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2358 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 606 $a62-XX$xStatistics [MSC 2020]$3VANC022998$2MF 606 $a62C10$xBayesian problems; characterization of Bayes procedures [MSC 2020]$3VANC028328$2MF 606 $a68T07$xArtificial neural networks and deep learning [MSC 2020]$3VANC036862$2MF 610 $aBayesian Deep Neural Networks$9KW:K 610 $aBayesian Inference$9KW:K 610 $aBernstein-von Mises Theorems$9KW:K 610 $aHigh-Dimensional Models$9KW:K 610 $aNonparametric Models$9KW:K 610 $aPosterior distributions$9KW:K 610 $aUncertainty Quantification$9KW:K 610 $aVariational Bayes$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aCastillo$bIsmaël$3VANV240234$01775936 712 12$aÉcole d'été de probabilités de Saint-Flour$d51.$f2023$3VANV240235 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250207$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-031-74035-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00286238 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2358 20250204 996 $aBayesian Nonparametric Statistics$94291109 997 $aUNICAMPANIA