LEADER 02497nam0 22005533i 450 001 VAN00282077 005 20251016120249.963 017 70$2N$a9783031559143 100 $a20241021d2024 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 181 $ai$b e 182 $ab 183 $acr 200 1 $aˆThe ‰p-adic Simpson Correspondence and Hodge-Tate Local Systems$fAhmed Abbes, Michel Gros 210 $aCham$cSpringer$d2024 215 $ax, 443 p.$cill.$d24 cm 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v2345 606 $a14A21$xLogarithmic algebraic geometry, log schemes [MSC 2020]$3VANC037086$2MF 606 $a14B10$xInfinitesimal methods in algebraic geometry [MSC 2020]$3VANC037145$2MF 606 $a14D07$xVariation of Hodge structures [MSC 2020]$3VANC021446$2MF 606 $a14F20$xÉtale and other Grothendieck topologies and (co)homologies [MSC 2020]$3VANC023775$2MF 606 $a14F30$x$p$-adic cohomology, crystalline cohomology [MSC 2020]$3VANC025578$2MF 606 $a14G20$xLocal ground fields in algebraic geometry [MSC 2020]$3VANC021831$2MF 606 $a14G45$xPerfectoid spaces and mixed characteristic [MSC 2020]$3VANC038028$2MF 610 $aDolbeault modules$9KW:K 610 $aFaltings topos$9KW:K 610 $aHiggs bundles$9KW:K 610 $aHodge-Tate local systems$9KW:K 610 $aHodge-Tate spectral sequence$9KW:K 610 $aKatz-Oda Higgs field$9KW:K 610 $aLanglands program$9KW:K 610 $aShimura Varieties$9KW:K 610 $ap-adic Hodge Theory$9KW:K 610 $ap-adic Simpson correspondence$9KW:K 610 $ap-adic geometry$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aAbbes$bAhmed$3VANV235028$0510226 701 1$aGros$bMichel$3VANV235029$01307890 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20251017$gRICA 856 4 $uhttp://doi.org/10.1007/978-3-031-55914-3$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00282077 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08CONS e-book $e08LNM2345 20241021 996 $aP-adic Simpson Correspondence and Hodge-Tate Local Systems$94444404 997 $aUNICAMPANIA