LEADER 02280nam0 22004573i 450 001 VAN00279339 005 20241113035527.409 017 70$2N$a9783031245831 100 $a20240708d2023 |0itac50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $aDual Variational Approach to Nonlinear Diffusion Equations$fGabriela Marinoschi 210 $aCham$cBirkhäuser$cSpringer$d2023 215 $axviii, 212 p.$cill.$d24 cm 410 1$1001VAN00044171$12001 $aProgress in nonlinear differential equations and their applications$1210 $aBoston [etc.]$cBirkhäuser$v102 410 1$1001VAN00115370$12001 $aPNLDE Subseries in Control$1210 $aBasel [etc.]$cBirkhäuser$d2016- 606 $a35-XX$xPartial differential equations [MSC 2020]$3VANC019763$2MF 606 $a35K20$xInitial-boundary value problems for second-order parabolic equations [MSC 2020]$3VANC022743$2MF 606 $a35K57$xReaction-diffusion equations [MSC 2020]$3VANC021665$2MF 606 $a35K59$xQuasilinear parabolic equations [MSC 2020]$3VANC033727$2MF 606 $a47H05$xMonotone operators and generalizations [MSC 2020]$3VANC020067$2MF 606 $a47J35$xNonlinear evolution equations [MSC 2020]$3VANC019761$2MF 610 $aBrezis-Ekeland principle$9KW:K 610 $aConvex Optimization Problems$9KW:K 610 $aDual variational inequalities$9KW:K 610 $aLegendre-Fenchel inequalities$9KW:K 610 $aMaximum principle$9KW:K 610 $aVariational methods$9KW:K 610 $am-accretive operators$9KW:K 620 $aCH$dCham$3VANL001889 700 1$aMarinoschi$bGabriela$3VANV073991$0517203 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-3-031-24583-1$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00279339 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 9372 $e08eMF9372 20240715 996 $aDual Variational Approach to Nonlinear Diffusion Equations$93087616 997 $aUNICAMPANIA