LEADER 02443nam0 22005173i 450 001 VAN00278254 005 20240808015442.834 017 70$2N$a9781447175230 100 $a20240619d2022 |0itac50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aAlgebraic geometry and commutative algebra$fSiegfried Bosch 205 $a2. ed 210 $aLondon$cSpringer$d2022 215 $ax, 504 p.$cill.$d24 cm 410 1$1001VAN00024506$12001 $aUniversitext$1210 $aBerlin [etc]$cSpringer$d1930- 606 $a13-XX$xCommutative algebra [MSC 2020]$3VANC019732$2MF 606 $a13Axx$xGeneral commutative ring theory [MSC 2020]$3VANC020708$2MF 606 $a14-XX$xAlgebraic geometry [MSC 2020]$3VANC019702$2MF 606 $a14A05$xRelevant commutative algebra [MSC 2020]$3VANC021323$2MF 606 $a14A15$xSchemes and morphisms [MSC 2020]$3VANC024027$2MF 606 $a14Axx$xFoundations of algebraic geometry [MSC 2020]$3VANC023894$2MF 606 $a14Bxx$xLocal theory in algebraic geometry [MSC 2020]$3VANC035296$2MF 606 $a14C20$xDivisors, linear systems, invertible sheaves [MSC 2020]$3VANC021318$2MF 606 $a14Cxx$xCycles and subschemes [MSC 2020]$3VANC021426$2MF 606 $a14D07$xVariation of Hodge structures [MSC 2020]$3VANC021446$2MF 606 $a14F10$xDifferentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials [MSC 2020]$3VANC023847$2MF 610 $aAlgebraic Geometry$9KW:K 610 $aCommutative algebra$9KW:K 610 $aHilbert?s zero point theorem$9KW:K 610 $aHomological Algebra$9KW:K 610 $aNoetherian and Artinian rings$9KW:K 610 $aSchemes$9KW:K 610 $aSheaves$9KW:K 620 $aGB$dLondon$3VANL000015 700 1$aBosch$bSiegfried$3VANV041964$041946 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20260130$gRICA 856 4 $uhttps://doi.org/10.1007/978-1-4471-7523-0$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00278254 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 8940 $e08eMF8940 20240701 996 $aAlgebraic geometry and commutative algebra$9837691 997 $aUNICAMPANIA