LEADER 02109nam 22004333 450 001 9910813637303321 005 20230629225116.0 010 $a9781683928379$b(electronic bk.) 010 $z9781683928386 035 $a(MiAaPQ)EBC7021248 035 $a(Au-PeEL)EBL7021248 035 $a(CKB)23976799400041 035 $aEBL7021248 035 $a(AU-PeEL)EBL7021248 035 $a(BIP)084623255 035 $a(EXLCZ)9923976799400041 100 $a20220626d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFintech Fundamentals $eBig Data / Cloud Computing / Digital Economy 210 1$aBloomfield :$cMercury Learning & Information,$d2022. 210 4$dİ2022. 215 $a1 online resource (239 pages) 300 $aDescription based upon print version of record. 311 08$aPrint version: Mei, Len Fintech Fundamentals Bloomfield : Mercury Learning & Information,c2022 9781683928386 330 8 $aThis book examines the underlying digital technologies required to build the new digital economy. It discusses basic concepts and elements of the technologies that make a digital economy possible, such as cloud and edge computing, 5G telecommunication, blockchain, big data, and how financial technology affects both old and new industry. The book serves as a comprehensive introduction and background to anyone who is interested in the subject in order to do further research on the individual subjects included here. FEATURES:Discusses basic concepts and elements of the technologies that make a digital economy possible, such as cloud and edge computing, 5G telecommunication, blockchain, big data, and AICovers financial service industries and effects of financial technology on industry 610 $aFinance 610 $aBusiness & Economics 676 $a332.10285 700 $aMei$b Len$01648315 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910813637303321 996 $aFintech Fundamentals$93996357 997 $aUNINA LEADER 01965nam0 22004093i 450 001 VAN00275457 005 20240806101542.634 017 70$2N$a9789811601477 100 $a20240429d2021 |0itac50 ba 101 $aeng 102 $aSG 105 $a|||| ||||| 200 1 $aGeometric Integrators for Differential Equations$fXinyuan Wu, Bin Wang 210 $aSingapore$cSpringer$d2021 215 $axviii, 499 p.$cill.$d24 cm 606 $a34C15$xNonlinear oscillations and coupled oscillators for ordinary differential equation [MSC 2020]$3VANC024610$2MF 606 $a65-XX$xNumerical analysis [MSC 2020]$3VANC019772$2MF 606 $a65Dxx$xNumerical approximation and computational geometry (primarily algorithms) [MSC 2020]$3VANC022980$2MF 606 $a65Lxx$xNumerical methods for ordinary differential equations [MSC 2020]$3VANC020052$2MF 610 $aEnergy-preserving schemes$9KW:K 610 $aGeometric algorithms for conservative or dissipative systems$9KW:K 610 $aGeometric numerical integration$9KW:K 610 $aLong-time behaviour of numerical integrators$9KW:K 610 $aOscillation-preserving integrators$9KW:K 610 $aSymplectic algorithms$9KW:K 620 $aSG$dSingapore$3VANL000061 700 1$aWu$bXinyuan$3VANV096624$0767990 701 1$aWang$bBin$3VANV096625$0767991 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-981-16-0147-7$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00275457 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-Book 8500 $e08eMF8500 20240503 996 $aGeometric Integrators for Differential Equations$94156913 997 $aUNICAMPANIA