LEADER 01689nam0 22003853i 450 001 VAN00268650 005 20240806101525.988 017 70$2N$a9781461252085 100 $a20231211d1984 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aClassical potential theory and its probabilistic counterpart$fJ. L. Doob 210 $aNew York$cSpringer$d1984 215 $axxiii, 846 p.$d25 cm 410 1$1001VAN00024107$12001 $aGrundlehren der mathematischen Wissenschaften$eA series of comprehensive texts in mathematics$1210 $aBerlin [etc.]$cSpringer$v262 606 $a31-XX$xPotential theory [MSC 2020]$3VANC019781$2MF 606 $a60J45$xProbabilistic potential theory [MSC 2020]$3VANC020091$2MF 610 $aMarkov Processes$9KW:K 610 $aMartingales$9KW:K 610 $aMotion$9KW:K 610 $aPotential theory$9KW:K 610 $aProbability Theory$9KW:K 610 $aTransition functions$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aDoob$bJoseph Leo$3VANV022598$026308 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20241115$gRICA 856 4 $uhttps://doi.org/10.1007/978-1-4612-5208-5$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00268650 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 7652 $e08eMF7652 20231218 996 $aClassical potential theory and its probabilistic counterpart$9344452 997 $aUNICAMPANIA