LEADER 01735nam0 2200337 i 450 001 VAN0123299 005 20240202123819.308 010 $a978-14-7043-780-0 100 $a20190912d2018 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aLinear holomorphic partial differential equations and classical potential theory$fDmitry Khavinson, Erik Lundberg 210 $aProvidence$cAmerican mathematical society$d2018 215 $aX, 214 p.$cill.$d26 cm 410 1$1001VAN0024209$12001 $aMathematical surveys and monographs$1210 $aProvidence$cAmerican mathematical society$v232 606 $a14P05$xReal algebraic sets [MSC 2020]$3VANC021325$2MF 606 $a31B20$xBoundary value and inverse problems for harmonic functions in higher dimensions [MSC 2020]$3VANC022729$2MF 606 $a35A20$xAnalyticity in context of PDEs [MSC 2020]$3VANC022904$2MF 606 $a30B40$xAnalytic continuation of one complex variable [MSC 2020]$3VANC032885$2MF 606 $a32Axx$xHolomorphic functions of several complex variables [MSC 2020]$3VANC033590$2MF 620 $aUS$dProvidence$3VANL000273 700 1$aKhavinson$bDmitry$3VANV094686$0296775 701 1$aLundberg$bErik$3VANV094687$0140885 712 $aAmerican mathematical society$3VANV108732$4650 801 $aIT$bSOL$c20240209$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN0123299 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 35-XX 2190 $e08DMF496 I 20190925 996 $aLinear holomorphic partial differential equations and classical potential theory$91561080 997 $aUNICAMPANIA LEADER 02004nam0 22005293i 450 001 VAN00268464 005 20250311095947.235 017 70$2N$a9781468493306 100 $a20231205d1982 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aˆA ‰Hilbert space problem book$fPaul R. Halmos 205 $a2. ed. rev. and enl 210 $aNew York$cSpringer-Verlag$d1982 215 $axvii, 369 p.$d24 cm 410 1$1001VAN00023579$12001 $aGraduate texts in mathematics$1210 $aNew York [etc.]$cSpringer$d1950-$v19 500 1$3VAN00241438$aˆA ‰Hilbert space problem book$979338 606 $a00A07$xProblem books [MSC 2020]$3VANC021527$2MF 606 $a46-XX$xFunctional analysis [MSC 2020]$3VANC019764$2MF 606 $a46Cxx$xInner product spaces and their generalizations, Hilbert spaces [MSC 2020]$3VANC024842$2MF 610 $aAnalytic functions$9KW:K 610 $aCompact Operators$9KW:K 610 $aCompactness$9KW:K 610 $aConvergence$9KW:K 610 $aConvexity$9KW:K 610 $aEigenvalue$9KW:K 610 $aHilbert Space$9KW:K 610 $aIntegrations$9KW:K 610 $aMaximum$9KW:K 610 $aMeasure$9KW:K 610 $aMetric spaces$9KW:K 610 $aMinimum$9KW:K 610 $aOperators$9KW:K 610 $aSpaces$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aHalmos$bPaul R.$3VANV020920$0439609 712 $aSpringer $3VANV108073$4650 790 1$aHalmos, Paul Richard$zHalmos, Paul R.$3VANV030339 790 1$aHalmos, P. R.$zHalmos, Paul R.$3VANV062966 801 $aIT$bSOL$c20251121$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00268464 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 7545 $e08eMF7545 20231211 996 $aHilbert space problem book$979338 997 $aUNICAMPANIA