LEADER 01892nam0 22004333i 450 001 VAN00268393 005 20250319040052.345 017 70$2N$a9781468401301 100 $a20231205d1981 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aGeometry$ea metric approach with models$fRichard S. Millman, George D. Parker 210 $aNew York$cSpringer$d1981 215 $ax, 355 p.$cill.$d25 cm 410 1$1001VAN00024019$12001 $aUndergraduate texts in mathematics$1210 $aBerlin [etc.]$cSpringer$d1958- 606 $a51F05$xAbsolute planes in metric geometry [MSC 2020]$3VANC023731$2MF 606 $a51K05$xGeneral theory of distance geometry [MSC 2020]$3VANC037729$2MF 606 $a51M05$xEuclidean geometries (general) and generalizations [MSC 2020]$3VANC023698$2MF 606 $a51M10$xHyperbolic and elliptic geometries (general) and generalizations [MSC 2020]$3VANC020835$2MF 610 $aAddition$9KW:K 610 $aBoundary Element Methods$9KW:K 610 $aGeometry$9KW:K 610 $aIdea$9KW:K 610 $aModels$9KW:K 610 $aReal numbers$9KW:K 610 $aValue at risk$9KW:K 620 $aUS$dNew York$3VANL000011 700 1$aMillman$bRichard S.$3VANV042087$047425 701 1$aParker$bGeorge D.$3VANV042089$052948 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250321$gRICA 856 4 $uhttps://doi.org/10.1007/978-1-4684-0130-1$zE-book ? Accesso al full-text attraverso riconoscimento IP di Ateneo, proxy e/o Shibboleth 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $fN 912 $aVAN00268393 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08DLOAD e-book 7515 $e08eMF7515 20231211 996 $aGeometry$983060 997 $aUNICAMPANIA LEADER 02217nam0 2200445 i 450 001 VAN00068208 005 20250513093043.851 010 $a978-35-408-5963-5 100 $a20090318d2009 |0itac50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $aLocal Lyapunov exponents$esublimiting growth rates of linear random differential equations$fWolfgang Siegert 210 $aBerlin$cSpringer$d2009 215 $aIX, 254 p.$d24 cm 300 $aPubblicazione disponibile anche in formato elettronico 461 1$1001VAN00102250$12001 $aLecture notes in mathematics$1210 $aBerlin [etc.]$cSpringer$v1963 500 1$3VAN00234650$aLocal Lyapunov exponents : sublimiting growth rates of linear random differential equations$92983378 606 $a34-XX$xOrdinary differential equations [MSC 2020]$3VANC021251$2MF 606 $a37-XX$xDynamical systems and ergodic theory [MSC 2020]$3VANC020363$2MF 606 $a60-XX$xProbability theory and stochastic processes [MSC 2020]$3VANC020428$2MF 606 $a92-XX$xBiology and other natural sciences [MSC 2020]$3VANC020839$2MF 610 $aDegenerate diffusion$9KW:K 610 $aExit probabilities$9KW:K 610 $aMetastability$9KW:K 610 $aOrdinary Differential Equations$9KW:K 610 $aRandom perturbations of dynamical systems$9KW:K 610 $aStochastic processes$9KW:K 610 $aSublimiting exponential growth rate$9KW:K 620 $dBerlin$3VANL000066 700 1$aSiegert$bWolfgang$3VANV054007$0472379 712 $aSpringer $3VANV108073$4650 801 $aIT$bSOL$c20250516$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/ID 62208.pdf$zID 62208.pdf 856 4 $uhttps://doi.org/10.1007/978-3-540-85964-2$zhttps://doi.org/10.1007/978-3-540-85964-2 899 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$1IT-CE0120$2VAN08 912 $aVAN00068208 950 $aBIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 60-XX 4059 $e08 8501 I 20090528 996 $aLocal Lyapunov exponents : sublimiting growth rates of linear random differential equations$92983378 997 $aUNICAMPANIA